
A Short Course in
Mathematics

for Engineering and Science Students

Simon A. Mathias
Department of Engineering

Durham University

July 27, 2023



This work is licensed under a
Creative Commons “Attribution-
NonCommercial-NoDerivatives
4.0 International” license.

Citation: Mathias, S. A. (2023) A Short Course in Mathemat-
ics for Engineering and Science Students. Durham University.
https://samathiasuk.github.io/MATHSnotes/MathiasMathsBook.
pdf

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en
https://samathiasuk.github.io/MATHSnotes/MathiasMathsBook.pdf
https://samathiasuk.github.io/MATHSnotes/MathiasMathsBook.pdf


2

Preface
This textbook is designed to help students understand how to
formulate and solve partial differential equations (PDE). It also
provides revision material for many basic mathematical concepts
including calculus, series expansion, complex numbers, partial
differentiation, vectors and matrices.

The book starts with an introduction to differentiation and
integration. Complex numbers are used to explain the differ-
ence between trigonometric and hyperbolic functions. Various
techniques for solving ordinary differential equations (ODE) are
introduced and explained. Maclaurin’s power series are used to
derive series expansions for many well known functions includ-
ing exponential, sine and cosine. The concepts of partial and to-
tal differentiation are explained. It is shown how to solve PDEs
using techniques for solving ODEs through similarity transforms
and separation of variables. The latter leads on to the develop-
ment of the Fourier transform and Fourier series. Basic con-
cepts associated with matrices are introduced and used to derive
fundamental engineering concepts including the Mohr circle and
Hookes’ law. The concept of vector calculus is introduced and
used to derive the Cauchy momentum equation and associated
wave equations.

This book is mostly derived from lecture notes, originally de-
veloped by the author, for geophysics students at Durham Uni-
versity. The author is grateful for associated contributions from
Prof Neil Goulty and Prof Jim McElwaine. The author also ac-
knowledges that many of the questions in the problem sheets
were obtained from Stroud’s Engineering Mathematics and Kreyszig’s
Advanced Engineering Mathematics.

Simon Mathias, Durham University 27/07/2023
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1

Differentiation and
integration

1.1 Learning outcomes
You should be able to:

• Describe the purpose of calculus.

• Determine algebraically the gradients of non-linear func-
tions.

• Show d(ex)/dx = ex.

• Prove and apply the product rule.

• Understand and apply the chain rule.

• Convert a table of derivatives to a table of integrals.

• Evaluate definite and indefinite integrals.

• Apply the method of integration by substitution.

• Apply the method of integration by partial fractions.

9



DIFFERENTIATION AND INTEGRATION 10

1.2 Differentiation - the gradient at a point
The origin of calculus (differentiation and integration) largely
dates back to Isaac Newton (1643-1727), who, during the time
of the Great Plague (1665-1666), was pondering about the cal-
culation of gradients. Gradients relate to numerous important
physical properties (velocity on a distance-time graph, acceler-
ation on a velocity time graph, etc.). For straight lines such as
y = mx+ c, the gradient of the line is obviously m. But what
about the gradients of curved lines, for example, as shown in
Fig. 1.1?

GEOL1081 4

1.3 Differentiation - the gradient at a point

The origin of calculus (differentiation and integration) largely
dates back to Isaac Newton (1643-1727), who, during the time
of the Great Plague (1665-1666), was pondering about the cal-
culation of gradients. Gradients relate to numerous important
physical properties (velocity on a distance-time graph, acceler-
ation on a velocity time graph, etc.). For straight lines such as
y = mx+ c, the gradient of the line is obviously m. But what
about the gradients of curved lines?

��

x0

y0
P

��

x0 +δx

y0 +δy
Q

y = mx2 + cx+d

Indeed, we can approximate the gradient between the two points,
P and Q, as δy/δx. But what about the gradient at a single point?
We can approach this result by looking at the gradient between
P and Q when P and Q are moved infinitesimally close together,
i.e. making δx → 0. But as δx → 0, it can also be seen that
δy → 0. What does it mean if we say

lim
δx→0

δy
δx

=
0
0

?

Figure 1.1: Approximate gradient of a curved line.

Indeed, we can approximate the gradient between the two
points, P and Q, as δy/δx. But what about the gradient at a sin-
gle point? We can approach this result by looking at the gradient
between P and Q when P and Q are moved infinitesimally close
together, i.e. making δx → 0. But as δx → 0, it can also be seen
that δy → 0. What does it mean if we say
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lim
δx→0

δy
δx

=
0
0

?

Newton set out to solve this conundrum (in a way similar to)
as follows:

Consider the function y = mx2 + cx+d

Assume point P is at (x0,y0) and point Q is at (x0 +δx,y0 +δy).
The linear gradient between P and Q is found from δy/δx. What
is the slope, δy/δx as a function of x0 and δx?

At x = x0 +δx, y = y0 +δy.

∴ y0 +δy = m(x0 +δx)2 + c(x0 +δx)+d

and of course y0 = mx2
0 + cx0 +d.

∴ δy = m(x0 +δx)2 −mx2
0 + c(x0 +δx)− cx0

∴ δy = m(x2
0 +2δxx0 +δx2)−mx2

0 + cδx

∴ δy = m(2δxx0 +δx2)+ cδx

and ÷ both sides by δx we have

δy
δx

= m(2x0 +δx)+ c

Now we write the derivative
dy
dx

, which represents the slope of
the line at a discrete point.

As we move points Q and P infinitesimally close together and
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setting x0 = x we have

dy
dx

= lim
δx→0

δy
δx

= 2mx+ c

So for y = mx2 + cx+d

dy
dx

= 2mx+ c

From the previous result, it can be appreciated that:

y dy/dx
1 0
x 1
x2 2x
x3 3x2

xn nxn−1

But the key result here is the identification of the “derivative”

dy
dx

= lim
δx→0

δy
δx

which is the gradient of a function y at an infinitesimal point, x.

Although it is known that Newton formulated his calculus the-
ory around 1665, he did not formally publish his results until
1693. However, prior to that, the German mathematician, Got-
tfried Leibniz (1646-1716), independently established and pub-
lished the theory of calculus in 1684. Both Leibniz and New-
ton were members of the Royal Society of London, and after
a long and rigorous investigation, the Royal Society authorita-
tively ruled that Newton was the originator of the theory. Never-
theless, the form of calculus notation used today originates from
the Leibniz manuscript as opposed to the apparently more cum-
bersome form of Newton.
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1.3 The derivative of ex

Consider the exponential series

y = ex ≡ 1+ x+
x2

2!
+

x3

3!
+ . . . (1.1)

Find
dy
dx

Consider the point (y+δy,x+δx)

y+δy = ex+δx = 1+ x+δx+
(x+δx)2

2!
+

(x+δx)3

3!
+ . . .

= 1+ x+δx+
x2

2!
+ xδx+

δx2

2!
+

x3 +3x2δx+3xδx2 +δx3

3!

Collecting terms of δx

y+δy= 1+x+
x2

2!
+

x3

3!
+δx

(
1+ x+

x2

2!

)
+

δx2

2
(1+2x)+

δx3

3
. . .

Now recalling Eq. (1.1)

δy = δx
(

1+ x+
x2

2!

)
+

δx2

2
(1+2x)+

δx3

3
. . .

Dividing both sides by δx

δy
δx

= 1+ x+
x2

2!
+

δx
2
(1+2x)+

δx2

3
. . .

and
dy
dx

= lim
δx→0

δy
δx

= 1+ x+
x2

2!
+ . . .= ex

So
d(ex)

dx
= ex
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1.4 The Product and Quotient Rules
Now consider a function of the form y = u(x)v(x)

Consider again the point (y+δy,x+δx)

u = u(x) v = v(x)

u+δu = u(x+δx) v+δv = v(x+δx)

y = y(x) = uv

y+δy = y(x+δx)

∴ y+δy = (u+δu)(v+δv)

∴ uv+δy = uv+ vδu+uδv+δuδv

δy
δx

= v
δu
δx

+u
δv
δx

+δu
δv
δx

Now it can be said that (for u and v are continuous functions)

lim
δx→0

δu = 0 lim
δx→0

δv = 0

and therefore
dy
dx

= lim
δx→0

δy
δx

= u
dv
dx

+ v
du
dx

Using this approach we can arrive at two important rules:

The Product rule:
d
dx

(uv) = u
dv
dx

+ v
du
dx
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The Quotient rule:
d
dx

(
u
g

)
=

1
g2

(
g

du
dx

−u
dg
dx

)

1.5 The Chain Rule
What happens when you get something like y = 3(x+3)7 ?

One way to deal with this is to make a substitution.

Say g = x+3 ⇒ y = 3g7

So
dy
dg

= 21g6

But
dy
dx

= ?

Recall that
dy
dx

= lim
δx→0

δy
δx

Now
δy
δx

=
δy
δx

δg
δx

δx
δg

=
δg
δx

δy
δg

from which it follows that
dy
dx

=
dg
dx

dy
dg

where y = f (g(x)).

So for the case above
dy
dx

=
dg
dx

×21g6 = 21(x+3)6.
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1.6 Integration - the opposite of differ-
entiation

Integration is simply the opposite of differentiation, i.e.∫ dy
dx

dx = y

We can therefore use the derivatives we previously established to
derive a table of corresponding integrals as shown in Table 1.1.

Table 1.1: Table of derivatives and integrals.
y dy/dx y

∫
ydx

xn nxn−1 xn (n+1)−1xn+1 +C
ex ex ex ex +C
sinx cosx cosx sinx+C
cosx −sinx sinx −cosx+C
tanx sec2 x sec2 x tanx+C
lnx x−1 x−1 lnx+C

1.7 The integration constant

Consider
d
dx

(x4 +2) = 4x3 ∴
∫

4x3dx = x4 +2

Now consider
d
dx

(x4 −5) = 4x3 ∴
∫

4x3dx = x4 −5

Note that we always get different answers.

So we should say
∫

4x3dx = x4 +C
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where C is the unknown integration constant and requires ad-
ditional information.

How can we find the integration constant?

Consider the integral

F =
∫

8x3 +6x2dx =
8
4

x4 +
6
3

x3 +C = 2x4 +2x3 +C

We can only find C if we have knowledge of F at a given point
x.

Eg. F = 3 when x = 2

∴ 3 = 2×16+2×8+C

∴ C = 3−32−16 =−45

1.8 Definite and indefinite integral
The integrals we have previously discussed are often referred to
as “indefinite integrals”, typically denoted as∫

f (x)dx

This is as opposed to “definite integrals, which are bound by
“limits”, in this case a and b (see Fig. 1.2).∫ b

a
f (x)dx
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∴ 3 = 2×16+2×8+C

∴ C = 3−32−16 =−45

1.9 Definite and indefinite integral

The integrals we have previously discussed are often referred to
as “indefinite integrals”, typically denoted as

∫
f (x)dx

This is as opposed to “definite integrals, which are bound by
“limits”, in this case a and b (see below).

∫ b

a
f (x)dx

a b
x

f (x)

Note that the value of the definite integral, in this case, corre-
sponds to the area bounded by y = f (x), x = a, x = b and y = 0.

An example of definite integral evaluation is shown below

Figure 1.2: Schematic diagram illustrating the meaning of the
limits a and b.

Note that the value of the definite integral, in this case, cor-
responds to the area bounded by y= f (x), x= a, x= b and y= 0.

An example of definite integral evaluation is shown below

F =
∫ b

a
8x3 +6x2dx =

[
2x4 +2x3]b

a = 2(b4 +b3 −a4 −a3)

1.9 Integration by substitution
Consider integrals such as∫

sin(2x+3)dx and
∫
(4x+2)5dx

The best way to deal with these is by integration by substitution.

Recall the chain rule
dy
dx

=
dg
dx

dy
dg
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Consider
∫

f (g(x))dx =
∫

f (g(x))
dg
dx

dx
dg

dx

From which it follows that
∫

f (g(x))dx =
∫

f (g(x))
dx
dg

dg

Challenge 1.1 Evaluate the integral
∫

sin(2x+3)dx

Let g = 2x+3 such that
dg
dx

= 2 and
dx
dg

=
1
2

It follows that∫
sin(2x+3)dx=

∫ sing
2

dg=−cosg
2

+C =−cos(2x+3)
2

+C

Challenge 1.2 Evaluate the integral
∫
(4x+2)5dx

Let g = 4x+2 such that
dg
dx

= 4 and
dx
dg

=
1
4

It follows that∫
(4x+2)5dx =

∫ g5

4
dg =

g6

24
+C =

(4x+2)6

24
+C

1.10 Integration by partial fractions

Partial fractions:
C
ab

=
A
a
+

B
b

Now consider something like F =
∫ 7x+8

2x2 +11x+5
dx
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The denominator can be split such that F =
∫ 7x+8

(2x+1)(x+5)
dx

and splitting into partial fractions: F =
∫ A

2x+1
+

B
x+5

dx

But what are A and B?

Well, it can be seen that:
7x+8

(2x+1)(x+5)
=

A
2x+1

+
B

x+5

∴ 7x+8 = (x+5)A+(2x+1)B

Find a value of x that eliminates A or B.

Choose x =−5 ⇒ 7× (−5)+8 = (2× (−5)+1)B

∴ 8−35 =−9B ⇒ B =
27
9

= 3

Choose x =−0.5 ⇒ 8−3.5 = 4.5A ⇒ A = 1

Check: 7x+8 = (x+5)+3(2x+1) = 7x+8 ✓

So F =
∫ 7x+8

2x2 +11x+5
dx =

∫ 1
2x+1

+
3

x+5
dx

Now let us consider the general problem of

G =
∫ 1

ax+b
dx

g = ax+b
dg
dx

= a
dx
dg

=
1
a

∴ G =
∫ 1

g
dx =

∫ 1
g

dx
dg

dg
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∴ G =
1
a

∫ 1
g

dg =
lng
a

+C =
ln(ax+b)

a
+C

Hence:
∫ 1

ax+b
dx =

ln(ax+b)
a

+C

So F =
∫ 1

2x+1
+

3
x+5

dx =
ln(2x+1)

2
+3ln(x+5)+C

1.11 Problem sheet
Problem 1.1 (see Worked Solution 1.1)

Determine algebraically, from first principles, the gradient of the
graph of y = 6x2 +5 at the point P where x = 0.5.

Problem 1.2 (see Worked Solution 1.2)

If y = 2x4 +3x3 −7x2 +2x−6, give expressions for:

a)
dy
dx

b)
d2y
dx2 c)

d3y
dx3

Problem 1.3 (see Worked Solution 1.3)

Differentiate the following functions using the product rule:

a) y = x4 sinx b) y = ex sinx

Problem 1.4 (see Worked Solution 1.4)
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Differentiate the following functions using the chain rule:

a) y = (2x−3)5 b) y = cos(3x2 + x)

Problem 1.5 (see Worked Solution 1.5)

Starting from
d(ex)

dx
= ex show that

d(lnx)
dx

=
1
x

Problem 1.6 (see Worked Solution 1.6)

Starting from
d(sinx)

dx
= cosx and

d(cosx)
dx

=−sinx

show that
d(tanx)

dx
= sec2 x

Problem 1.7 (see Worked Solution 1.7)

Using the table of integrals developed in class, evaluate the fol-
lowing integrals

a)
∫ 5

4
x3dx b)

∫
π/2

0
3cosxdx c)

∫ 4
x

dx d)
∫

2sec2 xdx

Problem 1.8 (see Worked Solution 1.8)

Using the method of integration by substitution, evaluate the fol-
lowing

a)
∫

3e4x+1dx b)
∫
(5x+2)−1dx

Problem 1.9 (see Worked Solution 1.9)

Using the method of integration by partial fractions, evaluate the
following

a)
∫ 4x+15

x2 +7x+12
dx b)

∫ 8x+15
2x2 +9x+9

dx
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1.12 Worked solutions
Worked Solution 1.1 (see Problem 1.1)

y = 6x2 +5

y0 +δy = 6(x0 +δx)2 +5

6x2
0 +5+δy = 6x2

0 +12x0δx+6δx2 +5

δy
δx

= 12x0 +6δx

dy
dx

= lim
δx→0

δy
δx

= 12x

At x = 0.5,
dy
dx

= 6

Worked Solution 1.2 (see Problem 1.2)

y = 2x4 +3x3 −7x2 +2x−6

a)
dy
dx

= 8x3 +9x2 −14x+2 b)
d2y
dx2 = 24x2 +18x−14

c)
d3y
dx3 = 48x+18

Worked Solution 1.3 (see Problem 1.3)

a) y = x4 sinx

dy
dx

= u
dv
dx

+ v
du
dx

= x4 cosx+4x3 sinx

b) y = ex sinx

dy
dx

= u
dv
dx

+ v
du
dx

= ex cosx+ ex sinx = ex(cosx+ sinx)



DIFFERENTIATION AND INTEGRATION 24

Worked Solution 1.4 (see Problem 1.4)

a) y = (2x−3)5

g = 2x−3, y = g5,
dy
dg

= 5g4

dy
dx

=
dg
dx

dy
dg

= 2×5g4 = 10(2x−3)4

b) y = cos(3x2 + x)

g = 3x2 + x, y = cosg,
dy
dg

=−sing

dy
dx

=
dg
dx

dy
dg

=−(6x+1)sin(3x2 + x)

Worked Solution 1.5 (see Problem 1.5)

Given
dex

dx
= ex

y = lnx, ey = x,
dx
dy

= ey

and
d lnx

dx
=

dy
dx

=
1
ey =

1
x

Worked Solution 1.6 (see Problem 1.6)

y = tanx =
sinx
cosx

dy
dx

=
1
g2

(
g

du
dx

−u
dg
dx

)
=

1
cos2 x

(cos2 x+ sin2 x) = sec2 x

recall that cos2 x+ sin2 x = 1

Worked Solution 1.7 (see Problem 1.7)



DIFFERENTIATION AND INTEGRATION 25

a)
∫ 5

4
x3dx =

[
x4

4

]5

4
=

54 −44

4
= 92.25

b)
∫

π/2

0
3cosxdx = [3sinx]π/2

0 = 3−0 = 3

c)
∫ 4

x
dx = 4lnx+C

d)
∫

2sec2 xdx = 2tanx+C

Worked Solution 1.8 (see Problem 1.8)

a) F =
∫

3e4x+1dx

g = 4x+1,
dg
dx

= 4,
dx
dg

=
1
4

F =
∫

3egdx = 3
∫

eg dg
dx

dx
dg

dx = 3
∫

eg dx
dg

dg

∴ F =
3
4

∫
egdg =

3
4

e4x+1 +C

b)
∫
(5x+2)−1dx

g = 5x+2,
dg
dx

= 5,
dx
dg

=
1
5

F =
∫

g−1dx =
∫

g−1 dg
dx

dx
dg

dx =
∫

g−1 dx
dg

dg

∴ F =
1
5

∫
g−1dg =

ln(5x+2)
5

+C

Worked Solution 1.9 (see Problem 1.9)

a) F =
∫ 4x+15

x2 +7x+12
dx
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4x+15
x2 +7x+12

=
4x+15

(x+3)(x+4)
=

A
x+3

+
B

x+4

∴ 4x+15 = (x+4)A+(x+3)B

x =−3, A =−12+15, A = 3

x =−4, −1 =−B, B = 1

Check: 4x+15 = 3x+12+ x+3 ✓

So F =
∫ 3

x+3
+

1
x+4

dx = 3ln(x+3)+ ln(x+4)+C

b)
∫ 8x+15

2x2 +9x+9
dx

8x+15
2x2 +9x+9

=
8x+15

(2x+3)(x+3)
=

A
2x+3

+
B

x+3

∴ 8x+15 = (x+3)A+(2x+3)B

x =−3, −24+15 =−3B, B = 3

x =−1.5, −12+15 = 1.5A, A = 2

Check: 8x+15 = 2x+6+6x+9 ✓

So F =
∫ 2

2x+3
+

3
x+3

dx = ln(2x+3)+3ln(x+3)+C
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Complex numbers

2.1 Learning outcomes
You should be able to:

• Understand what a complex number is.

• Understand that i4 = i−4 = 1.

• Add, subtract, multiply and divide complex numbers.

• Draw an Argand diagram.

• Show why complex numbers can be presented in polar,
exponential and trigonometric forms.

• Use the above knowledge to prove trigonometric formulae
and derivatives.

2.2 NIRIC
Let us start by considering NIRIC:

27
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Natural numbers 1,2,3,4, etc.
Integers −3,−2,−1,0,1,2,3, etc.
Rational numbers 7/34,13/71,2/3, etc.
Irrational numbers π = 3.14159 . . . ,e = 2.7182 . . . , etc.
Complex numbers 6+ i3,1.789− i2.36,π− i2π, etc.

Note that a ‘complex’ is a mixture. A complex number is a mix-
ture of real and imaginary numbers. Imaginary numbers are de-
noted by the prefix i (or sometimes j).

So what is an imaginary number?

i =
√
−1

2.3 When do complex numbers come about?
Lets start with quadratic equations:

x2 −1 = 0 x2 +1 = 0
x2 = 1 x2 =−1
x =±

√
1 x =±

√
−1

x =±1 x =±i

Now recall the general quadratic formula

ax2 +bx+ c = 0

where x is found from

x =
−b±

√
b2 −4ac

2a
and consider
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x2 +2x−3 = 0 x2 +2x+3 = 0

x =
−2±

√
4+12

2
x =

−2±
√

4−12
2

x =−1±2 x =−1± i
√

2
x = 1 or 3 x =−1+ i

√
2 or −1− i

√
2

The right-hand-side is a set of complex results.

2.4 Powers of i
i =

√
−1

i2 = (
√
−1)2 =−1

i3 = i2 × i =−i
i4 = i2 × i2 = 1
i5 = i4 × i = i
i10 = (i4)2 × i2 =−1

What about negative integer powers of i?

i−1 =
1× i
i× i

=
i
−1

=−i

i−2 =
1
−1

=−1

i−3 =
1

i2 × i
=

1× i
i2 × i× i

=
i
i4

= i

i−4 = 1

The important thing to remember is that i4 = 1. Therefore we can
handle really high orders of i very easily. For example i−126 =
(i4)−31i−2 = 1×−1 =−1.
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2.5 Addition, subtraction and multipli-
cation

Consider

z1 = a+ ib and z2 = c+ id

It follows that

z1 + z2 = a+ c+ i(b+d)

z1 − z2 = a− c+ i(b−d)

z1 × z2 = (a+ ib)(c+ id)
= ac+ ibc+ iad + i2bd
= ac−bd + i(bc+ad)

2.6 Division
Now consider

z1 ÷ z2 =
a+ ib
c+ id

which is fine, except that it is generally considered good form
not to have imaginary numbers in both the nominator and the
denominator. One way to eliminate i from the denominator is to
multiply both top and bottom by the so-called ‘conjugate’.

Consider the complex number a+ ib. The conjugate of this is
a− ib. The conjugate of a complex number is the same as the
complex number of concern, except that the sign of the imagi-
nary part is changed.
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Now we will multiply the top and bottom of the above equation
by the conjugate of the bottom

z1 ÷ z2 =
(a+ ib)× (c− id)
(c+ id)× (c− id)

=
ac+ ibc− iad − i2bd
c2 + icd − icd − i2d2

=
ac+bd + i(bc−ad)

c2 +d2

All imaginary numbers are now at the top!

2.7 Argand diagrams
Considering again a complex number of the form z = a+ ib. It is
possible to represent this in a two-dimensional plot in Fig. 2.1.
Diagrams such as in Fig. 2.1 are often referred to as Argand
diagrams, after Jean-Robert Argand (1806).GEOL1081 7

a

b

θ

r

Real part

Im
ag

in
ar

y
pa

rt

Diagrams such as that above are often referred to as Argand dia-
grams, after Jean-Robert Argand (1806).

2.9 Polar form of a complex number

From the Argand diagram above it can be easily appreciated that
another way of representing a complex number is by its radial
distance from the origin, r, and the angle of orientation, θ . It
can be easily seen that

r2 = a2 +b2

tanθ = b/a
(1)

The polar form of a complex number is generally written as

z = r∠θ

Sometimes people refer to the ‘modulus’ of a complex number

|z|=
√

a2 +b2 ≡ r

and the argument of a ‘complex’ number

Figure 2.1: Example of an Argand diagram.
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2.8 Polar form of a complex number
From the Argand diagram above it can be easily appreciated that
another way of representing a complex number is by its radial
distance from the origin, r, and the angle of orientation, θ. It can
be easily seen that

r2 = a2 +b2

tanθ = b/a
(2.1)

The polar form of a complex number is generally written as

z = r∠θ

Sometimes people refer to the ‘modulus’ of a complex number

|z|=
√

a2 +b2 ≡ r

and the argument of a ‘complex’ number

argz = arctan
(

b
a

)
≡ θ

Note that arctan is a way of writing inverse tan.

2.9 Trigonometric form of a complex num-
ber

Further examination of Eq. (2.1) and the diagram above also
reveals that

a = r cosθ

b = r sinθ

It follows that another way of writing complex numbers is in a
trigonometric form
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z = r cosθ+ ir sinθ (2.2)

2.10 Exponential form of a complex num-
ber

Consider again the exponential series expansion

ex = 1+ x+
x2

2!
+

x3

3!
+

x4

4!
+

x5

5!
+ . . .

and set x = iθ.

eiθ = 1+ iθ+
i2θ2

2!
+

i3θ3

3!
+

i4θ4

4!
+

i5θ5

5!
+ . . .

Recalling that i2 =−1 then leads to

eiθ = 1+ iθ− θ2

2!
− iθ3

3!
+

θ4

4!
+

iθ5

5!
+ . . .

Collecting real and imaginary parts we then have

eiθ =

(
1− θ2

2!
+

θ4

4!
+ . . .

)
+ i
(

θ− θ3

3!
+

θ5

5!
+ . . .

)
Now it turns out that

cosθ = 1− θ2

2!
+

θ4

4!
+ . . . and sinθ = θ− θ3

3!
+

θ5

5!
+ . . .

It follows that

eiθ = cosθ+ isinθ (2.3)
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which, on comparison with Eq. (2.2), reveals that complex num-
bers can also be written in an exponential form such as

z = reiθ

Eq. (2.3) above is often referred to as Euler’s formula.

2.11 More on Euler’s formula
Let us again consider the Euler formula, Eq. (2.3)

eiθ = cosθ+ isinθ

it follows that

e−iθ = cos(−θ)+ isin(−θ)
= cosθ− isinθ

and consequently that

eiθ + e−iθ = cosθ+ isinθ+ cosθ− isinθ

= 2cosθ

Similarly

eiθ − e−iθ = cosθ+ isinθ− cosθ+ isinθ

= 2isinθ

From which it follows:

cosθ =
eiθ + e−iθ

2
sinθ =

eiθ − e−iθ

i2
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2.12 An amazing equation
Again consider Euler’s formula

eiθ = cosθ+ isinθ

Bringing everything to the left-hand-side

eiθ − cosθ− isinθ = 0

Setting θ = π then leads to

eiπ +1 = 0

Interestingly, raising the irrational quantity, e, to the power of the
imaginary and irrational quantity, iπ, leads to the a real and ratio-
nal quantity, −1. It is amazing to find so many key concepts in
mathematics locked up in just one simple equation (e, i,π,1,0).

2.13 Problem sheet
Problem 2.1 (see Worked Solution 2.1)

Simplify the following

a) i5 b) i12 c) i−18 d) i37

Problem 2.2 (see Worked Solution 2.2)

Express in the form a+ ib

a) (2− i6)(3+ i2) b) (i−2)2 c)
5+ i2
6− i

d)
2+ i6
3+ i2

Problem 2.3 (see Worked Solution 2.3)
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Sketch the Argand diagrams and express in polar, exponential
and trigonometric form

a) 2+ i6 b) 3− i7

Problem 2.4 (see Worked Solution 2.4)

Express in the form a+ ib

a) 6 [cos(π/5)+ isin(π/5)] b) 6∠37o c) e2+iπ/3

Problem 2.5 (see Worked Solution 2.5)

Given that
d(ex)

dx
= ex and eix = cosx+ isinx show that

a)
d(sinx)

dx
= cosx b)

d(cosx)
dx

=−sinx

Problem 2.6 (see Worked Solution 2.6)

Starting from eix = cosx+ isinx, show that

a) cos(A+B) = cosAcosB− sinAsinB

b) sin(A+B) = sinAcosB+ cosAsinB

2.14 Worked solutions
Worked Solution 2.1 (see Problem 2.1)

a) i5 = i4 × i = i

b) i12 = (i4)3 = 1
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c) i−18 = (i−4)4 × i−2 −1

d) i37 = (i4)9 × i = i

Worked Solution 2.2 (see Problem 2.2)

a) (2− i6)(3+ i2) = 6− i18+ i4+12 = 18− i14

b) (i−2)2 = i2 −4i+4 = 3−4i

c)
5+ i2
6− i

=
(5+ i2)(6+ i)
(6− i)(6+ i)

=
30+ i12+ i5−2

36+1
=

28+ i17
37

d)
2+ i6
3+ i2

=
(2+ i6)(3− i2)
(3+ i2)(3− i2)

=
6+ i18− i4−12i2

9+4
=

18+ i14
13

Worked Solution 2.3 (see Problem 2.3)

a) 2+ i6

θ = arctan(6/2) = arctan(3) = 1.249 rad (= 71.56o)

r =
√

4+36 =
√

40 = 6.3246

∴ 2+i6=
√

40∠71.6o =
√

40ei1.25 =
√

40[cos71.6o+isin71.6o]

b) 3− i7

θ = arctan(−7/3) =−1.166 rad (=−66.80o)

r =
√

9+49 =
√

58 = 7.616

∴ 3+i7=
√

58∠−66.8o =
√

58e−i1.17 =
√

58[cos66.8o−isin66.8o]

Worked Solution 2.4 (see Problem 2.4)
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a) 6 [cos(π/5)+ isin(π/5)] = 6(0.809+ i0.588) = 4.85+ i3.53

b) 6∠37o = 6(cos37o + isin37o) = 4.79+ i3.61

c) e2+iπ/3 = e2eiπ/3 = e2 [cos(π/3)+ isin(π/3)] = 3.69+ i6.40

Worked Solution 2.5 (see Problem 2.5)

Given eix = cosx+ isinx, we have e−ix = cosx− isinx.

It follows that eix + e−ix = 2cosx and eix − e−ix = i2sinx

from which we have cosx =
eix + e−ix

2
and sinx =

eix − e−ix

i2

a)
d(sinx)

dx
=

ieix − (−i)e−ix

i2
=

ex + e−x

2
= cosx

b)
d(cosx)

dx
=

ieix − ie−ix

2
=

i2eix − i2e−ix

i2
=−sinx

Worked Solution 2.6 (see Problem 2.6)

From eix = cosx+ isinx we have:

eiA = cosA+ isinA

eiB = cosB+ isinB

ei(A+B) = cos(A+B)+ isin(A+B)

and ei(A+B) = eiAeiB, therefore it can be said

ei(A+B) = (cosA+ isinA)(cosB+ isinB)

∴ ei(A+B) = cosAcosB+ isinAcosB+ icosAsinB+ i2 sinAsinB
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∴ ei(A+B) = cosAcosB− sinAsinB+ i(sinAcosB+ cosAsinB)

∴ cos(A+B)+ isin(A+B) = cosAcosB− sinAsinB
+i(sinAcosB+ cosAsinB)

Equating real and imaginary parts

a) cos(A+B) = cosAcosB− sinAsinB

b) sin(A+B) = sinAcosB+ cosAsinB
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Hyperbolic functions

3.1 Learning outcomes
You should be able to:

• Define hyperbolic functions in terms of exponentials.

• Relate hyperbolic functions to trigonometric functions.

• Sketch plots of cosh, sinh and tanh.

• Derive expressions for inverse cosh, sinh and tanh.

• Obtain hyperbolic formulae analogous to trigonometric for-
mulae.

• Derive expressions for the derivatives and integrals of cosh,
sinh and tanh.

3.2 What are hyperbolic functions?
We talked earlier about

40
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cosx =
eix + e−ix

2
and sinx =

eix − e−ix

i2
What happens when the arguments for sin and cos become imag-
inary?

cos ix =
ei2x + e−i2x

2
=

e−x + ex

2

sin ix =
ei2x − e−i2x

i2
=

e−x − ex

i2
Introducing the hyperbolic functions:

coshx =
ex + e−x

2
sinhx =

ex − e−x

2

tanhx =
sinhx
coshx

cothx =
1

tanhx

sechx =
1

coshx
cosechx =

1
sinhx

3.3 Relationship with trigonometric func-
tions

Given

cos ix =
ex + e−x

2
and sin ix =

−1
i

(
ex − e−x

2

)
it follows that

coshx = cos ix sinhx =−isin ix tanhx =−i tan ix
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and

cos ix = coshx sin ix = isinhx tan ix = i tanhx

It is worth to compare this to

cos(−x) = cosx sin(−x) =−sinx tan(−x) =− tanhx

3.4 So what do they look like?
First recall the trigonometric functions, cosx, sinx and tanx (see
Figs. 3.1 and 3.2 ).

GEOL1081 4

3.4 Relationship with trigonometric functions

Given

cosiθ =
eθ + e−θ

2
and siniθ =

−1
i

(

eθ − e−θ

2

)

it follows that

coshθ = cosiθ sinhθ =−isiniθ tanhθ =−i taniθ

and

cosiθ = coshθ siniθ = isinhθ taniθ = i tanhθ

It is worth to compare this to

cos(−θ) = cosθ sin(−θ) =−sinθ tan(−θ) =− tanhθ

3.5 So what do they look like?

First recall the trigonometric functions:

−2π −π π 2π

1

−1

cosx

sinx

Figure 3.1: Plots of cosx and sinx.



HYPERBOLIC FUNCTIONS 43
GEOL1081 5

−2π −π π 2π

5

−5

tanx

Now lets look at the hyperbolics:

coshθ =
eθ + e−θ

2
, sinhθ =

eθ − e−θ

2

First consider the limit asθ → 0.

lim
θ→0

eθ = 1, lim
θ→0

e−θ = 1

It follows that:

lim
θ→0

coshθ =
1+1

2
= 1, lim

θ→0
sinhθ =

1−1
2

= 0

Now lets study the limit asθ → ∞.

lim
θ→∞

eθ = ∞, lim
θ→∞

e−θ = 0 (1)

It follows that

Figure 3.2: Plot of tanx.

Now lets look at the hyperbolic functions:

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2
First consider the limit as x → 0.

lim
x→0

ex = 1, lim
x→0

e−x = 1

It follows that:

lim
x→0

coshx =
1+1

2
= 1, lim

x→0
sinhx =

1−1
2

= 0

Now lets study the limit as x → ∞.

lim
x→∞

ex = ∞, lim
x→∞

e−x = 0 (3.1)

It follows that
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lim
x→∞

coshx = lim
x→∞

sinhx = ∞ (3.2)

Similarly it can said that

lim
x→−∞

coshx = lim
x→−∞

−sinhx = ∞ (3.3)

Plots of coshx and sinhx are shown in Fig. 3.3. Note the com-
plete loss of periodicity!
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lim
θ→∞

coshθ = lim
θ→∞

sinhθ = ∞ (2)

Similarly it can said that

lim
θ→−∞

coshθ = lim
θ→−∞

−sinhθ = ∞ (3)

−2π −π π 2π

10

−10

coshx

sinhx

As for tanhθ . Recall that

tanhθ =
sinhθ
coshθ

and from Eqs. (1), (2) and (3) we have

lim
θ→0

tanhθ = 0, lim
θ→∞

tanhθ = 1, lim
θ→−∞

tanhθ =−1 (4)

Figure 3.3: Plots of coshx and sinhx.

As for tanhx. Recall that

tanhx =
sinhx
coshx

and from Eqs. (3.1), (3.2) and (3.3) we have

lim
x→0

tanhx = 0, lim
x→∞

tanhx = 1, lim
x→−∞

tanhx =−1 (3.4)
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A plot of tanhx is shown in Fig. 3.4.
GEOL1081 7

−2π −π π 2π

1

−1

tanhx

Note the complete loss of periodicity!
Figure 3.4: Plot of tanhx.

3.5 Problem sheet
Problem 3.1 (see Worked Solution 3.1)

Consider:

a) cos2 x+ sin2 x = 1

b) cos(A+B) = cosAcosB− sinAsinB

c) sin(A+B) = sinAcosB+ cosAsinB

Derive equivalent results for hyperbolic functions.

Problem 3.2 (see Worked Solution 3.2)

Starting from: coshx =
ex + e−x

2
, sinhx =

ex − e−x

2
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and tanhx =
sinhx
coshx

, show that the associated inverses are:

a) arccoshx = ln
(

x±
√

x2 −1
)

b) arcsinhx = ln
(

x±
√

x2 +1
)

c) arctanhx =
1
2

ln
(

1+ x
1− x

)
Problem 3.3 (see Worked Solution 3.3)

Derive expressions for a) the derivatives and b) the integrals of

(i) coshx (ii) sinhx (iii) tanhx

3.6 Worked solutions
Worked Solution 3.1 (see Problem 3.1)

Starting with the identities coshx = cos ix and sinhx = −isin ix
it follows that

cosh ix = cosx

sinh ix =−isin−i2x =−isinx

∴ isinh ix =−i2 sinx = sinx

a) 1 = cos2 z+ sin2 z = cosh2 iz+(isinh iz)2 = cosh2 iz− sinh2 iz

Substituting x = iz it follows that cosh2 x− sinh2 x = 1
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b) cos(a+b) = cosacosb− sinasinb

cosh(ia+ib)= cosh iacosh ib−i2 sinh iasinh ib ∴ cosh(ia+ib)=
cosh iacosh ib+ sinh iasinh ib

Substituting A = ia and B = ib it follows that

cosh(A+B) = coshAcoshB+ sinhAsinhB

c) sin(a+b) = sinacosb+ cosasinb

isinh(ia+ ib) = isin iacosh ib+ icosh iasinh ib ∴ sinh(ia+ ib) =
sinh iacosh ib+ cosh iasinh ib

Substituting A = ia and B = ib it follows that

sinh(A+B) = sinhAcoshB+ coshAsinhB

Worked Solution 3.2 (see Problem 3.2)

a) x = coshy and y = arccoshx

It can also be said that 2x = 2coshy = ey + e−y

Making the substitution z = ey, this simplifies to 2x = z+ z−1

from which it follows that z2 −2xz+1 = 0

Solving for z then leads to z = (2x±
√

4x2 −4)/2

from which it follows that ey = x±
√

x2 −1
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So finally arccoshx = ln
(

x±
√

x2 −1
)

b) x = sinhy and y = arcsinhx

It can also be said that 2x = 2sinhy = ey − e−y

Making the substitution z = ey, this simplifies to 2x = z− z−1

from which it follows that z2 −2xz−1 = 0

Solving for z then leads to z = (2x±
√

4x2 +4)/2

from which it follows that ey = x±
√

x2 +1

So finally arcsinhx = ln
(

x±
√

x2 +1
)

c) x = tanhy and y = arctanhx

It can also be said that x =
sinhx
coshx

=
ey − e−y

ey + e−y

Making the substitution z = ey, this simplifies to x(z+ z−1) =
z− z−1

from which it follows that z2 =
1+ x
1− x

and consequently z =

√
1+ x
1− x
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and finally arctanhx =
1
2

ln
(

1+ x
1− x

)

Worked Solution 3.3 (see Problem 3.3)

(i) Starting with coshx =
ex + e−x

2

a)
d(coshx)

dx
=

ex − e−x

2
= sinhx

b)
∫

coshxdx =
ex − e−x

2
+C = sinhx+C

(ii) Starting with sinhx =
ex − e−x

2

a)
d(sinhx)

dx
=

ex + e−x

2
= coshx

b)
∫

sinhxdx =
ex + e−x

2
+C = coshx+C

(iii) Starting with tanhx =
sinhx
coshx

and invoking the quotient rule

a)
d(tanhx)

dx
=

1
g2

(
g

du
dx

−u
dg
dx

)
=

1
cosh2 x

(
cosh2 x− sinh2 x

)
and invoking cosh2 x− sinh2 x = 1 leads to

d(tanhx)
dx

= sech2x

b)
∫

tanhxdx =
∫ sinhx

coshx
dx

u = coshx and
du
dx

= sinhx
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∴
∫

tanhxdx =
∫ sinhx

u
dx
du

du =
∫ 1

u
du = lnu+C

∴
∫

tanhxdx = ln(coshx)+C
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More differentiation

4.1 Learning outcomes
You should be able to:

• Derive equations for tangents and normals for points on
curves.

• Mathematically locate maxima, minima and inflection points.

• Apply the principle of logarithmic differentiation.

• Differentiate inverse trigonometric functions.

• Differentiate inverse hyperbolic functions.

4.2 Tangents and normals
It is often desirable to determine algebraic expressions for the
tangent and normal that pass through a point, P, situated on the
function y = f (x) at (x1,y1) (see Fig. 4.1).

51
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GEOL1081 3

4.3 Tangents and normals

It is often desirable to determine algebraic expressions for the
tangent and normal that pass through a point,P, situated on the
functiony = f (x) at (x1,y1).

bb

x1

y1
P

Normal

Tangent

y = f (x)

The tangent,yt , at pointP can be described by the linear equation

yt = mtx+ ct

It can be easily be realized that the slope,mt , is defined by

mt =
dy
dx

∣

∣

∣

∣

x=x1

We also know that atx = x1, y = y1 from which it follows that

y1 = mtx1+ ct

ct = y1−mtx1

and

yt = mt(x− x1)+ y1

Figure 4.1: Schematic diagram showing a normal and tangent.

The tangent, yt , at point P can be described by the linear equation

yt = mtx+ ct

It can be easily be realized that the slope, mt , is defined by

mt =
dy
dx

∣∣∣∣
x=x1

We also know that at x = x1, y = y1 from which it follows that

y1 = mtx1 + ct

ct = y1 −mtx1

and
yt = mt(x− x1)+ y1

The tangent, yn, at point P can be described by the linear equa-
tion

yn = mnx+ cn
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and recalling that y = y1 at x = x1, it can be said that

yn = mn(x− x1)+ y1

GEOL1081 4

The tangent,yn, at pointP can be described by the linear equa-
tion

yn = mnx+ cn

and recalling thaty = y1 at x = x1, it can be said that

yn = mn(x− x1)+ y1

Now consider the geometry below

−mn

1
mt

1
θ

θ
δx1 δx2

δy

bb
P

The gradients of the tangent and normal,mt andmn are defined
by

mt =
δy
δx1

, mn =−
δy
δx2

But notice that

tanθ =
δy
δx1

=
δx2

δy

from which it follows that

mn =−
1

mt

and consequently

yn =
1

mt
(x1− x)+ y1

Figure 4.2: Schematic diagram showing a normal and tangent.

Now consider the geometry shown in Fig. 4.2. The gradients of
the tangent and normal, mt and mn are defined by

mt =
δy
δx1

, mn =− δy
δx2

But notice that

tanθ =
δy
δx1

=
δx2

δy

from which it follows that

mn =− 1
mt

and consequently

yn =
1

mt
(x1 − x)+ y1
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4.3 Location of maxima, minima and in-
flection

It has already been discussed how differentiation can be used to
find gradients. Differentiation can also be used to find minima,
maxima and inflection points.

Fig. 4.3 shows some results from differentiating

y = 4x− x2 + x3/15 (4.1)

Note that y′ and y′′ are the first and second derivatives with re-
spect to x.

GEOL1081 5

4.4 Location of maxima, minima and inflection

It has already been discussed how differentiation can be used to
find gradients. Differentiation can also be used to find minima,
maxima and inflection points.

Below are some results from differentiating

y = 4x− x2+ x3/15 (1)

Note thaty′ andy′′ are the first and second derivatives with re-
spect tox.

0

2

4

−2

2 4 6 8

y
y′

y′′

max

min

inflection

Maxima are points where the gradient is changing from positive
to negative. Minima are points where the gradient is changing
from negative to positive. As the gradient changes sign it must
pass through zero. Therefore, maxima and minima are referred
to as stationary points as they refer to points where the gradient
is exactly zero.

It follows that maxima and minima points of a functiony = f (x)
can be found where the first derivatives are zero. Consider again

Figure 4.3: Schematic diagram illustrating the meaning of max-
ima, minima and inflection.

Maxima are points where the gradient is changing from positive
to negative. Minima are points where the gradient is changing
from negative to positive. As the gradient changes sign it must
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pass through zero. Therefore, maxima and minima are referred
to as stationary points as they refer to points where the gradient
is exactly zero.

It follows that maxima and minima points of a function y = f (x)
can be found where the first derivatives are zero. Consider again
Eq. (4.1). Differentiating with respect to x leads to

y′ ≡ dy
dx

= 4−2x+3x2/15 (4.2)

setting y′ = 0 leads to the quadratic equation

0 = 4−2x+3x2/15

It follows that stationary points exist at

x = 5±
√

5 = 2.7639 or 7.2361

As stated earlier, maxima and minima are points where the gradi-
ent is changing from positive to negative and negative to positive,
respectively. It follows that the gradient of the gradient (i.e. the
second derivative, y′′) should be negative at maxima and positive
at minima.

Consider the derivative of Eq. (4.2)

y′′ ≡ d2y
dx2 =−2+6x/15 (4.3)

It can now be seen that

y′′(x = 2.76) =−0.89 and y′′(x = 7.24) = 0.89

from which it can be concluded that x = 2.76 is the maximum
and x = 7.24 is the minimum (compare with the figure above).
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Another point of interest is the point of inflection. This exists
where the gradient is stationary. It follows that this is found
where y′′ = 0. Consider Eq. (4.3). Setting y′′ = 0 and solving for
x leads to x = 5.

4.4 Logarithmic differentiation
We have seen earlier how products of two functions can be eas-
ily differentiated using the product rule. With more than two
functions we can use nested applications of the product rule. For
example, for y = uvw we can say:

d(uvw)
dx

= vw
du
dx

+u
d(vw)

dx

= vw
du
dx

+uw
dv
dx

+uv
dw
dx

= uvw
(

1
u

du
dx

+
1
v

dv
dx

+
1
w

dw
dx

)
However, this can become quite tedious with more functions in
the products, especially when some are denominators. A more
general method is to take logs on both side.

Consider again:
y = uvw

Taking logs of both sides leads to

lny = ln(uvw) = lnu+ lnv+ lnw (4.4)

Now consider
y = ln f (4.5)
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Applying the chain rule

dy
dx

=
dy
dx

d f
dx

dx
d f

=
dy
d f

d f
dx

(4.6)

Now from Eq. (4.5), we have that

dy
d f

=
1
f

and from Eq. (4.6), we have

d(ln f )
dx

=
1
f

d f
dx

(4.7)

from which it follows that differentiating Eq. (4.4) with respect
to x leads to

1
y

dy
dx

=
1
u

du
dx

+
1
v

dv
dx

+
1
w

dw
dx

and recalling that y = uvw we have

d(uvw)
dx

= uvw
(

1
u

du
dx

+
1
v

dv
dx

+
1
w

dw
dx

)

Derivation of the quotient rule
Now consider

y =
u
v

Taking logs on both sides

lny = lnu− lnv

Differentiating both sides and recalling Eq. (4.7) yields

1
y

dy
dx

=
1
u

du
dx

− 1
v

dv
dx
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and recalling that y = u/v leads to

d
dx

(u
v

)
=

u
v

(
1
u

du
dx

− 1
v

dv
dx

)
which on rearranging, finally yields the quotient rule

d
dx

(u
v

)
=

1
v2

(
v

du
dx

−u
dv
dx

)

Some worked examples

Challenge 4.1 Differentiate
x2 sinx
cos2x

with respect to x.

Let y =
x2 sinx
cos2x

Taking logs on both sides

lny = 2lnx+ ln(sinx)− ln(cos2x)

Differentiating both sides leads to

1
y

dy
dx

=
2
x
+

cosx
sinx

+
2sin2x
cos2x

and therefore

dy
dx

=
x2 sinx
cos2x

(
2
x
+ cotx+2tan2x

)

Challenge 4.2 Differentiate
e4x

x3 cosh2x
with respect to x.
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Let y =
e4x

x3 cosh2x

Taking logs on both sides

lny = 4x−3ln(x)− ln(cosh2x)

Differentiating both sides leads to

1
y

dy
dx

= 4− 3
x
−2tanh2x

and therefore

dy
dx

=
e4x

x3 cosh2x

(
4− 3

x
−2tanh2x

)

4.5 Differentiating inverse functions
In Chapter 1 we looked at how to obtain the derivative of lnx.
Recall

y = lnx ⇒ x = ey

Differentiating with respect to y

dx
dy

= ey = x

Multiplying both sides by dy/dx and dividing both sides by x
then yields

1
x

dy
dx

dx
dy

=
1
x
=

dy
dx

Hence it is found that

d(lnx)
dx

=
1
x
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Note that lnx is the inverse of ex. Exactly the same procedure
can be used for finding derivatives for many other inverse func-
tions.

Consider
y = arccosx ⇒ x = cosy

Differentiating with respect to y

dx
dy

=−siny

Multiplying both sides by dy/dx and dividing both sides by sinx
then yields

dy
dx

=
d(arccosx)

dx
=

−1
siny

But it is possible to simplify this further. Recall that

cos2 y+ sin2 y = 1

It follows that
siny =±

√
1− cos2 y

Furthermore, in this case, cosy = x. Therefore we can say

d(arccosx)
dx

=
∓1√
1− x2

4.6 Problem sheet
Problem 4.1 (see Worked Solution 4.1)

Derive the derivatives of:

a) arccosx b) arcsinx c) arctanx

d) arccoshx e) arcsinhx f) arctanhx
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Problem 4.2 (see Worked Solution 4.2)

Differentiate the following:

a)
e3x cos2x

sinx
b)

x3 cos(x+2)
e3x c) ln

(
1+ x2

1− x2

)
d) arctan

(
ex
√

1− x2

cosh3x

)

Problem 4.3 (see Worked Solution 4.3)

a) Locate, mathematically, the maxima, minima and inflection
points of

y = x3 −6x2 +2x+4

b) Derive equations for the tangent and normal at the inflection
point.

c) Present your results as a sketched graph.

4.7 Worked solutions
Worked Solution 4.1 (see Problem 4.1)

a) y = arccosx therefore x = cosy and
dx
dy

=−siny

Recall that cos2 x+ sin2 x = 1

∴
d(arccosx)

dx
≡ dy

dx
=

−1
siny

=
∓1√
sin2 y

=
∓1√

1− cos2 y
=

∓1√
1− x2
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b) y = arcsinx therefore x = siny and
dx
dy

= cosy

∴
d(arcsinx)

dx
≡ dy

dx
=

1
cosy

=
±1√
cos2 y

=
±1√

1− sin2 y
=

±1√
1− x2

c) y = arctanx therefore x = tany and
dx
dy

= sec2 y

Now cos2 y+ sin2 y = 1 therefore 1+ tan2 y = sec2 y

∴
d(arctanx)

dx
≡ dy

dx
=

1
sec2 y

=
1

1+ tany2 =
1

1+ x2

d) y = arccoshx therefore x = coshy and
dx
dy

= sinhy

Recall that cosh2 x− sinh2 x = 1

∴
d(arccoshx)

dx
≡ dy

dx
=

±1√
sinh2 y

=
±1√

cosh2 y−1
=

±1√
x2 −1

e) y = arcsinhx therefore x = sinhy and
dx
dy

= coshy

∴
d(arcsinhx)

dx
≡ dy

dx
=

±1√
cosh2 y

=
±1√

1+ sinh2 y
=

±1√
1+ x2

f) y = arctanhx therefore x = tanhy and
dx
dy

= sech2y

Now cosh2 y− sinh2 y = 1 therefore 1− tanh2 y = sech2y

∴
d(arctanhx)

dx
≡ dy

dx
=

1
sech2y

=
1

1− tanh2 y
=

1
1− x2

Worked Solution 4.2 (see Problem 4.2)
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a) y =
e3x cos2x

sinx

lny = ln
e3x cos2x

sinx
= 3x+ ln(cos2x)− ln(sinx)

d(lny)
dx

=
1
y

dy
dx

= 3− 2sin2x
cos2x

− cosx
sinx

= 3−2tan2x− cotx

∴
dy
dx

=
e3x cos2x(3−2tan2x− cotx)

sinx

b) y =
x3 cos(x+2)

e3x

lny = 3lnx+ ln[cos(x+2)]−3x

1
y

dy
dx

=
3
x
− tan(x+2)−3

∴
dy
dx

=
x3 cos(x+2)

e3x

(
3
x
− tan(x+2)−3

)

c) y = ln
(

1+ x2

1− x2

)
= ln(1+ x2)− ln(1− x2)

dy
dx

=
2x

1+ x2 +
2x

1− x2 =
2x−2x3 +2x+2x3

1− x4 =
4x

1− x4

d) y = arctan

(
ex
√

1− x2

cosh3x

)
= arctanu

u =
ex
√

1− x2

cosh3x

lnu = x+
1
2

ln(1− x2)− ln(cosh3x)
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du
dx

=
ex
√

1− x2

cosh3x

(
1− x

1− x2 −3tanh3x
)

dy
du

=
1

1+u2

dy
dx

=
du
dx

dx
du

dy
dx

=
du
dx

dy
du

∴
dy
dx

=
u

1+u2

(
1− x

1− x2 −3tanh3x
)

Worked Solution 4.3 (see Problem 4.3)

a) y = x3 −6x2 +2x+4

dy
dx

= 3x2−12x+2 ⇒ 0= x2−4x+
2
3

⇒ x = 2±
√

4−2/3

d2y
dx2 = 6x−12 ⇒ 0 = x−2 ⇒ x = 2

d2y
dx2

∣∣∣∣
x=2+

√
4−2/3

= 6(2+
√

4−2/3)−12 = 10.95 (min)

d2y
dx2

∣∣∣∣
x=2−

√
4−2/3

= 6(2−
√

4−2/3)−12 =−10.95 (max)

From which it follows that:

Maximum: x = 2−
√

4−2/3

Minimum: x = 2+
√

4−2/3

Inflection: x = 2

b) Tangent at inflection: ytan =
dy
dx

∣∣∣∣
x=2

(x−2)+ y(x = 2)
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∴ ytan = (3×4−12×2+2)(x−2)+23 −6×22 +2×2+4

∴ ytan =−10(x−2)−8 and ynor = 0.1(x−2)−8



5

More integration

5.1 Learning outcomes
You should be able to:

• List previous differentiation results as integrals.

• Understand that
∫

f ′/ f dx = ln f +C.

• Understand that
∫

f ′ f dx = f 2/2+C.

• Understand and apply integration by parts.

• Integrate formulae containing trigonometric functions.

• Integrate formulae containing hyperbolic functions.

5.2 How is our table integrals looking?
We have now established an extensive list of derivatives and cor-
responding integrals (see Table 5.1).

66
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Table 5.1: Table of derivatives and integrals.

y dy/dx y
∫

ydx
xn nxn−1 xn (n+1)−1xn+1 +C
ex ex ex ex +C
lnx x−1 x−1 lnx+C
sinx cosx cosx sinx+C
cosx −sinx sinx −cosx+C
tanx sec2 x sec2 x tanx+C
sinhx coshx coshx sinhx+C
coshx sinhx sinhx coshx+C
tanhx sech2x sech2x tanhx+C
arcsinx (1− x2)−1/2 (1− x2)−1/2 arcsinx+C
arccosx −(1− x2)−1/2 −(1− x2)−1/2 arccosx+C
arctanx (1+ x2)−1 (1+ x2)−1 arctanx+C
arcsinh x (1+ x2)−1/2 (1+ x2)−1/2 arcsinh x+C
arccosh x (x2 −1)−1/2 (x2 −1)−1/2 arccosh x+C
arctanh x (1− x2)−1 (1− x2)−1 arctanh x+C

tanx lnsecx+C
tanhx lncoshx+C

5.3 Integrals of the form
∫

f ′/ f

Recall the integration of tanx.

F =
∫

tanxdx =
∫ sinx

cosx
dx

Our strategy involved making the substitution f = cosx such that

F =
∫ sinx

f
dx
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Applying the chain rule then leads to

F =
∫ sinx

f
dx
d f

d f

Of course we know that d f/dx = −sinx. Therefore it can be
said that

F =−
∫ 1

f
d f =− ln f +C = lnsecx+C

What we have benefited from is the fact that sinx is a linear func-
tion of the derivative of cosx. Namely, sinx =−d cosx/dx.

A more general way of highlighting this advantage is as follows.
Consider ∫ f ′

f
dx

where recall that f ′ = d f/dx.

Applying the chain rule it can be seen that

∫ f ′

f
dx =

∫ 1
f

d f = ln f +C (5.1)

So look out for when a function can be separated out into the
form f ′ f . For example:

F =
∫ 2x+3

x2 +3x−5
dx

Note that
f = x2 +3x−5 and f ′ = 2x+3

Therefore from Eq. (5.1)

F = ln(x2 +3x+5)+C
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5.4 Integrals of the form
∫

f ′ f

Another related form is

∫
f ′ f dx =

∫
f ′ f

dx
d f

dx =
∫

f d f =
f 2

2
+C

So look out for when a function can be separated out into the
form f ′/ f . For example:

F =
∫
(2x+3)(x2 +3x−5)dx =

(x2 +3x−5)2

2
+C

5.5 Integration by parts
Recall the product rule

d(uv)
dx

= u
dv
dx

+ v
du
dx

Integrating both sides with respect to x leads to

uv =
∫

u
dv
dx

dx+
∫

v
du
dx

dx

and rearranging gives

∫
u

dv
dx

dx = uv−
∫

v
du
dx

dx (5.2)

The above result can be particularly useful for integrating prod-
ucts. Application of Eq. (5.2) is often referred to as “integration
by parts”.
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For example:

F =
∫

x2 lnxdx

The first step is to choose which part is u and which is v′. If we
set u = x2 we to integrate lnx. Alternatively, if we set u = lnx,
we have to integrate x2. The latter is obviously preferable. So,
setting u = lnx and v′ = x2 and noting that u′ = 1/x and v = x3/3
we have, from Eq. (5.2)

F =
x3 lnx

3
−

∫ x2

3
dx =

x3

3

(
lnx− 1

3

)
+C

5.6 Integrating trigonometric and hyper-
bolic functions

We already know the integrals for cosx and sinx, but how do we
deal with problems such as below?

F =
∫

sin2 xdx (5.3)

We need to apply our trigonometric and hyperbolic identities:

cos2 x+ sin2 x = 1

cos(A+B) = cosAcosB− sinAsinB

sin(A+B) = cosAsinB+ sinAcosB

cosh2 x− sinh2 x = 1

cosh(A+B) = coshAcoshB+ sinhAsinhB

sinh(A+B) = coshAsinhB+ sinhAcoshB

Using the above we can see that for Eq. (5.3) we can benefit
from setting A = B = x to get

cos2x = cos2 x− sin2 x = 1−2sin2 x =−1+2cos2 x
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from which it follows that sin2 x = (1−cos2x)/2. Therefore we
can say that∫

sin2 xdx =
∫ 1− cos2x

2
dx =

x
2
− sin2x

4
+C

Similarly we can say that∫
cos2 xdx =

∫ 1+ cos2x
2

dx =
x
2
+

sin2x
4

+C

Challenge 5.1 Evaluate
∫

sin3 xdx

Let

F =
∫

sin3 xdx =
∫

sinxsin2 xdx =
∫

sinxdx−
∫

sinxcos2 xdx

In the same way that we can say∫
f f ′dx =

f 2

2
+C

it can also be said that∫
f 2 f ′dx =

f 3

3
+C

Therefore we have

F =−cosx+
cos3 x

3
+C (5.4)

Challenge 5.2 Evaluate
∫

sinhaxcoshbxdx
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Let
F =

∫
sinhaxcoshbxdx

Recall that

sinh(A+B) = coshAsinhB+ sinhAcoshB

It follows that

sinh(A−B) =−coshAsinhB+ sinhAcoshB

and
sinh(A+B)+ sinh(A−B) = 2sinhAcoshB

Therefore we can say that

F =
1
2

∫
sinh[(a+b)x]+ sinh[(a−b)x]dx

which is easily evaluated as

F =
cosh[(a+b)x]

2(a+b)
+

cosh[(a−b)x]
2(a−b)

+C

5.7 Problem sheet
Problem 5.1 (see Worked Solution 5.1)

Integrate the following

a) cos3 x b) cos5 x c)
sin2x

1+ cos2 x

Problem 5.2 (see Worked Solution 5.2)

Integrate the following

a) cosh3 x b) sinh5 x c) sinh2xcosh3x



MORE INTEGRATION 73

Problem 5.3 (see Worked Solution 5.3)

Integrate the following

a) x2e3x b) e3x sinx c) x3 ln(x+4)

Problem 5.4 (see Worked Solution 5.4)

Integrate the following

a)
3x2 +5

x3 +5x−7
b)

cosx
1+ sinx

c) (x2 −3x+6)(2x−3)

You will benefit from remembering:

cos2 x+ sin2 x = 1

cos(A+B) = cosAcosB− sinAsinB

sin(A+B) = sinAcosB+ cosAsinB

5.8 Worked solutions
Worked Solution 5.1 (see Problem 5.1)

a) F =
∫

cos3 xdx =
∫

cosxcos2 xdx =
∫

cosx(1− sin2 x)dx

u = sinx and
du
dx

= cosx

∴ F =
∫

cosx(1− sin2 x)
1

cosx
du =

∫
(1−u2)du
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∴ F = u− u3

3
+C = sinx− sin3 x

3
+C

b) F =
∫

cos5 xdx =
∫

cosxcos4 xdx =
∫

cosx(1− sin2 x)2dx

u = sinx and
du
dx

= cosx

∴ F =
∫

cosx(1− sin2 x)2 1
cosx

du =
∫

1−2u2 +u4du

∴ F = u− 2u3

3
+

u5

5
+C = sinx− 2sin3 x

3
+

sin5 x
5

+C

c) F =
∫ sin2x

1+ cos2 x
dx

cos(A+B) = cosAcosB− sinAsinB

∴ cos2x = cos2 x− sin2 x ⇒ 1+ cos2 x = (3+ cos2x)/2

∴ F =
∫ 2sin2x

3+ cos2x
dx

u = cos2x and
du
dx

=−2sin2x

∴ F =
∫

− 1
3+u

du =− ln(3+u)+C =− ln[3+ cos2x]+C

Another way is as follows:

Now sin(A+B) = sinAcosB+ cosAsinB

∴ sin2x = 2sinxcosx
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If u = cos2 x,
du
dx

=−2sinxcosx =−sin2x

∴ F =−
∫ 1

(1+u)
du =− ln(1+ cos2 x)+D

Recall that 1+ cos2 x = (3+ cos2x)/2

∴− ln(1+ cos2 x)+D =− ln(3+ cos2x)+ ln2+D

Worked Solution 5.2 (see Problem 5.2)

a) F =
∫

cosh3 xdx=
∫

coshxcosh2 xdx=
∫

coshx(1+sinh2 x)dx

u = sinhx and
du
dx

= coshx

F =
∫
(1+u2)du = u+

u3

3
+C = sinhx+

sinh3 x
3

+C

b) F =
∫

sinh5 xdx=
∫

sinhxsinh4 xdx=
∫

sinhx(cosh2 x−1)2dx

u = coshx and
du
dx

= sinhx

F =
∫
(1−2u2 +u4)du = u− 2u3

3
+

u5

5
+C

∴ F = coshx− 2cosh3 x
3

+
cosh5 x

5
+C

c) F =
∫

sinh2xcosh3xdx

sinh(A+B) = sinhAcoshB+ coshAsinhB

∴ sinh(A−B) = sinhAcoshB− coshAsinhB
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∴ sinh(A+B)+ sinh(A−B) = 2sinhAcoshB

∴ F =
∫ sinh5x− sinhx

2
dx =

cosh5x
10

− coshx
2

+C

Worked Solution 5.3 (see Problem 5.3)

a) F =
∫

x2e3xdx∫
u

dv
dx

dx = uv−
∫

v
du
dx

dx

∴ F =
x2e3x

3
−

∫ 2xe3x

3
dx =

x2e3x

3
− 2xe3x

9
+

∫ 2e3x

9
dx

∴ F =
x2e3x

3
− 2xe3x

9
+

2e3x

27
+C =

e3x

3

(
x2 − 2x

3
+

2
9

)
+C

b) F =
∫

e3x sinxdx

F =−e3x cosx+3
∫

e3x cosxdx

F =−e3x cosx+3e3x sinx−9
∫

e3x sinxdx

F =−e3x cosx+3e3x sinx−9F

∴ F =
e3x(3sinx− cosx)

10
+C

c) F =
∫

x3 ln(x+4)dx

u = x+4
du
dx

= 1 x3 = (u−4)3
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∴ F =
∫
(u−4)3 lnudu

∴ F =
(u−4)4

4
lnu−A

where

A =
∫

(u−4)4

4u
du

Now (u−4)4 = u4 −16u3 +96u2 −256u+256

and
(u−4)4

4u
=

u3

4
−4u2 +24u−64+

64
u

∴ A =
u4

16
− 4u3

3
+12u2 −64u+64lnu+C

Worked Solution 5.4 (see Problem 5.4)

a)
∫ 3x2 +5

x3 +5x−7
dx = ln(x3 +5x−7)+C

b)
∫ cosx

1+ sinx
dx = ln(1+ sinx)+C

c)
∫
(x2 −3x+6)(2x−3)dx =

(x2 −3x+6)2

2
+C
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First-order differential
equations

6.1 Learning outcomes
You should be able to:

• Formulate differential equations.

• Solve first-order differential equations using direct inte-
gration.

• Solve first-order differential equations using separation of
variables.

• Solve homogenous first-order differential equations using
y = vx.

6.2 The order of differential equations
A differential equation is a relationship between an independent
variable, x, a dependent variable, y, and one or more derivatives

78
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of y with respect to x, e.g.

d2y
dx2 −3

dy
dx

+2y = x2

The order of a differential equation is given by the highest deriva-
tive involved in the equation:

−3
dy
dx

+2y = x2

is a first-order equation

d2y
dx2 −3

dy
dx

+2y = x2

is a second-order equation

d3y
dx3 +2y = x2

is a third-order equation, and so on.

Another useful distinction is whether an equation is linear or
non-linear. A linear differential equation is linear in the depen-
dent variable, e.g.

d2y
dx2 −3

dy
dx

+2y = x2

Note that although the equation above is non-linear in x, it is lin-
ear in y, which is the dependent variable. Therefore the above
equation is considered to be a linear equation. It is linear in y
because none of the terms contain powers of y other than y0 and
y1.
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In contrast, the following equations are non-linear in y:

y
dy
dx

−3
dy
dx

+2y = x2

d2y
dx2 −3

dy
dx

+2y =
x2

y

d2y
dx2 −3

dy
dx

+2siny = x2

Linear equations are generally a lot easier to deal with.

6.3 Formation of differential equations
Differential equations are often formed to describe various quan-
titative situations. Mathematically, they can be formed by con-
tinuous differentiation of particular functions.

Challenge 6.1 Determine the underlying ordinary differential
equation associated with y = Ax2 +Bx.

Let
y = Ax2 +Bx (6.1)

Differentiating with respect to x leads to

dy
dx

= 2Ax+B (6.2)

and again
d2y
dx2 = 2A (6.3)

Substituting Eq. (6.3) into Eq. (6.2) yields

B =
dy
dx

− x
d2y
dx2 (6.4)
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which on substitution into Eq. (6.1) along with Eq. (6.3) yields
the second-order differential equation

x2

2
d2y
dx2 − x

dy
dx

+ y = 0 (6.5)

Challenge 6.2 Determine the underlying ordinary differential
equation associated with y = Aex.

Let
y = Aex (6.6)

Differentiating with respect to x leads to

dy
dx

= Aex

which on substitution back into Eq. (6.6) leads to the first-order
differential equation

dy
dx

= y

Challenge 6.3 Determine the underlying ordinary differential
equation associated with y = Aex +Be−x.

Let
y = Aex +Be−x (6.7)

Differentiating with respect to x leads to

dy
dx

= Aex −Be−x

and differentiating again leads to

d2y
dx2 = Aex +Be−x



FIRST-ORDER DIFFERENTIAL EQUATIONS 82

which on substitution back into Eq. (6.7) yields the second-order
differential equation

d2y
dx2 = y

Now consider
y =C coshx+Dsinhx (6.8)

Differentiating with respect to x leads to

dy
dx

=C sinhx+Dcoshx

and differentiating again leads to

d2y
dxx =C coshx+Dsinhx

which on substitution back into Eq. (6.8) also yields the second-
order differential equation

d2y
dx2 = y (6.9)

So Eqs. (6.7) and (6.8) are both general solutions to the differ-
ential equation in Eq. (6.9).

From the above, we have seen that it is relatively straightforward
to formulate the differential equation associated with a given
solution. In what follows, we will examine various techniques
for reversing this process, i.e., deriving solutions to differential
equations. This term we will focus on first-order differential
equations. Deriving solutions to second-order equations is re-
served for later in the following term.
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6.4 Direct integration
The simplest technique is direct integration.

Challenge 6.4 Solve the ordinary differential equation

dy
dx

= 6x2 −6x+7

Integrating both sides with respect to x∫ dy
dx

dx =
∫

6x2 −6x+7dx

yields the general solution

y = 2x3 −3x2 +7x+C

Challenge 6.5 Solve the ordinary differential equation

2x
dy
dx

= 6x3 +5

Make the derivative the subject of the formula

dy
dx

= 3x2 +
5
2x

Integrating both sides with respect to x∫ dy
dx

dx =
∫

3x2 +
5
2x

dx

yields the general solution

y = x3 +
5
2

lnx+C
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6.5 Separation of variables
All pretty easy until you end up with something like

dy
dx

=
3x2

y+1

Integrating both sides with respect to x leads to

y =
∫ 3x2

y+1
dx

So what can we do with the y term in the denominator?

The trick is to separate the variables on to either side and apply
the chain rule.

Challenge 6.6 Solve the ordinary differential equation

dy
dx

=
3x2

y+1

First separate all the y-factors to the LHS and the x-factors to the
RHS such that

(y+1)
dy
dx

= 3x2

Integrating both sides with respect to x then leads to∫
(y+1)

dy
dx

dx =
∫

3x2dx

Consideration of the chain rule allows the above to simplify to
get (recall integration by substitution)∫

(y+1)dy =
∫

3x2dx
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Evaluating the integrals on both sides then leads to

y2

2
+ y = x3 +C

which is a quadratic. Applying the quadratic formula finally
yields

y =−1±
√

1+2(x3 +C)

Challenge 6.7 Solve the ordinary differential equation

dy
dx

= (x−1)(y−1)

First separate all the y-factors to the LHS and the x-factors to the
RHS such that

1
y−1

dy
dx

= x−1

Integrating both sides with respect to x then leads to∫ 1
y−1

dy
dx

dx =
∫
(x−1)dx

Evaluating the integrals on both sides then leads to

ln(y−1) =
x2

2
− x+C

and solving for y we have

y = Aexp
(

x2

2
− x
)
+1

where A = eC.

Challenge 6.8 Solve the ordinary differential equation

dy
dx

=
y−1
x−1
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First separate all the y-factors to the LHS and the x-factors to the
RHS such that

1
y−1

dy
dx

=
1

x−1
Integrating both sides with respect to x then leads to∫ 1

y−1
dy
dx

dx =
∫ 1

x−1
dx

Evaluating the integrals on both sides then leads to

ln(y−1) = ln(x−1)+C = ln[A(x−1)]

where A = eC.

Solving for y we have

y = A(x−1)+1

Challenge 6.9 Solve the ordinary differential equation

dy
dx

=
y2 + xy2

x2y− x2

First separate all the y-factors to the LHS and the x-factors to the
RHS such that

y−1
y2

dy
dx

=
x+1

x2

Integrating both sides with respect to x then leads to∫ y−1
y2 dy =

∫ x+1
x2 dx

which expands to get∫ 1
y
− 1

y2 dy =
∫ 1

x
+

1
x2 dx
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Evaluating the integrals then yields

lny+
1
y
= lnx− 1

x
+C

Note that here it is not possible to get an explicit solution for y
or x so evaluation would need to be by an iterative process. This
is a common problem with solutions to non-linear differential
equations.

6.6 Homogenous equations
But what happens if you end up with something like

dy
dx

=
x2 + y2

xy

It is not possible to separate out the x-factors and y-factors.

But look what happens when we set y = vx.

d(vx)
dx

=
x2 + v2x2

vx2 =
1+ v2

v

Applying the product rule we have

d(vx)
dx

= v+ x
dv
dx

Therefore we can say that

v+ x
dv
dx

=
1+ v2

v

which is now separable.
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Separating v-factors and x-factors to the LHS and RHS, respec-
tively, and integrating both sides with respect to x then leads to∫

vdv =
∫ 1

x
dx

and consequently
v2

2
= lnx+C

Reversing the substitution finally yields

y2 = 2x2(lnx+C)

So why does this work? It works because the equation is ho-
mogenous. Homogeneous in what respect? In terms of degrees.
Recall the example we just solved

dy
dx

=
x2 + y2

xy

Consider either x or y as degrees. All the terms in both the nomi-
nator and denominator (i.e., x2, y2 and xy) have the same number
of degrees. In this respect, the above equation is homogenous.
So when we replace y with vx, all the x’s cancel out. Conse-
quently we can subsequently separate variables as above.

Challenge 6.10 Solve the ordinary differential equation

dy
dx

=
xy+ y2

x2 + xy

We can see that all the terms in both the nominator and denom-
inator have the same number of degrees, hence the equation is
homogenous. Making the substitution y = vx leads to

v+ x
dv
dx

=
v+ v2

1+ v
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hence it can be said that
dv
dx

= 0

Integrating with respect to x then leads to

v =C

and
y =Cx

Challenge 6.11 Solve the ordinary differential equation

(x3 − xy2)
dy
dx

= xy2 − y3

Solving for the derivative leads to

dy
dx

=
xy2 − y3

x3 − xy2

Again we can see that all the terms in both the nominator and de-
nominator have the same number of degrees, hence the equation
is homogenous. Making the substitution y = vx leads to

v+ x
dv
dx

=
v2 − v3

1− v2

and

x
dv
dx

=
v(v−1)
1− v2 =

−v
1+ v

Separating variables and integrating with respect to x∫ 1
v
+1dv =−

∫ 1
x

dx

which evaluates to yield

lnv+ v =− lnx+C

Reversing the substitution finally leads to

ln
(y

x

)
+

y
x
=− lnx+C
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6.7 Problem sheet
Problem 6.1 (see Worked Solution 6.1)

Derive the differential equations for the following functions

a) y = A lnx b) y = Acosx+Bsinx c) y = Ax+Bx2+Cx3

Problem 6.2 (see Worked Solution 6.2)

Solve the following differential equations using separations of
variables

a)
dy
dx

=
1+2y
2+ x

b) xy
dy
dx

=
x3 −1
y−3

c)
sinx
1+ y

dy
dx

= cosx

d) y tanx
dy
dx

= (4+ y2)sec2 x

Problem 6.3 (see Worked Solution 6.3)

Solve the following homogenous differential equations

a) (x2 + y2)
dy
dx

= xy b) 2x2 dy
dx

= x2 + y2 c)
dy
dx

=
xy− y2

x2 + xy

6.8 Worked solutions
Worked Solution 6.1 (see Problem 6.1)

a) y = A lnx

Differentiating both sides we have
dy
dx

=
A
x
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From the original equation we have A =
y

lnx

∴
dy
dx

=
y

x lnx

b) y = Acosx+Bsinx

dy
dx

=−Asinx+Bcosx

d2y
dx2 =−Acosx−Bsinx

∴
d2y
dx2 =−y

c) y = Ax+Bx2 +Cx3

dy
dx

= A+2Bx+3Cx2

d2y
dx2 = 2B+6Cx

d3y
dx3 = 6C

C =
1
6

d3y
dx3 , B =

1
2

d2y
dx2 −

x
2

d3y
dx3 , A =

dy
dx

− x
d2y
dx2 +

x2

2
d3y
dx3

∴ y = x
dy
dx

− x2 d2y
dx2 +

x3

2
d3y
dx3 +

x2

2
d2y
dx2 −

x3

2
d3y
dx3 +

x3

6
d3y
dx3

which reduces to y = x
dy
dx

− x2

2
d2y
dx2 +

x3

6
d3y
dx3

Worked Solution 6.2 (see Problem 6.2)
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a)
dy
dx

=
1+2y
2+ x

Rearranging leads to
1

1+2y
dy
dx

=
1

2+ x

Integrating both sides with respect to x∫ 1
1+2y

dy =
∫ 1

2+ x
dx

∴
ln(1+2y)

2
= ln(2+ x)+C

or we can say ln(1+2y) = ln[e2C(2+ x)2]

∴ y =
e2C(2+ x)2 −1

2

b) xy
dy
dx

=
x3 −1
y−3

∴
∫

y(y−3)dy =
∫ x3 −1

x
dx

∴
y3

3
− 3y2

2
=

x3

3
− lnx+C

c)
sinx
1+ y

dy
dx

= cosx

∴
∫ 1

1+ y
dy =

∫
cotxdx

∴ ln(1+ y) =
∫ cosx

sinx
1

cosx
d sinx = ln(sinx)+C

∴ y = eC sinx−1
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d) y tanx
dy
dx

= (4+ y2)sec2 x

∴
∫ y

4+ y2 dy =
∫ sec2 x

tanx
dx

∴
ln(4+ y2)

2
= ln tanx+C

∴ y2 = e2C tan2 x−4

Worked Solution 6.3 (see Problem 6.3)

a) (x2 + y2)
dy
dx

= xy

∴
dy
dx

=
xy

x2 + y2

Set y = vx such that we have
d(vx)

dx
=

vx2

x2 + v2x2 =
v

1+ v2

Applying the product rule we have
d(vx)

dx
= v+ x

dv
dx

So it follows that v+ x
dv
dx

=
v

1+ v2

∴ x
dv
dx

=
v

1+ v2 − v =
v− v− v3

1+ v2 =− v3

1+ v2

Rearranging and integrating with respect to x∫ 1+ v2

v3 dv =−
∫ 1

x
dx

∴− 1
2v2 + lnv =− lnx+C

∴− x2

2y2 + ln
(y

x

)
=− lnx+C
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b) 2x2 dy
dx

= x2 + y2

∴
dy
dx

=
x2 + y2

2x2

∴ v+ x
dv
dx

=
x2 + v2x2

2x2 =
1+ v2

2

∴ x
dv
dx

=
1−2v+ v2

2
=

(1− v)2

2

∴
∫ 2

(1− v)2 dv =
∫ 1

x
dx

∴
2

1− v
= lnx+C

∴ y =
(

1− 2
lnx+C

)
x

c)
dy
dx

=
xy− y2

x2 + xy

∴ v+ x
dv
dx

=
v− v2

1+ v

∴ x
dv
dx

=
v− v2

1+ v
− v =

−2v2

1+ v

∴
∫ −1− v

2v2 dv =
∫ 1

x
dx

∴
1
2v

− lnv
2

= lnx+C
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More first-order differential
equations

7.1 Learning outcomes
You should be able to:

• Show how to use integration factors to solve linear FO dif-
ferential equations.

• Show how to use integration factors to solve non-linear
Bernoulli equations.

• Distinguish between general solutions and particular solu-
tions.

95
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7.2 Integrating factor approach to linear
equations

Consider the linear equation

dy
dx

+3y = e5x (7.1)

Obviously we can’t solve this using any of the previous methods.

Again we will apply another trick. Multiply both sides by a fac-
tor F = e3x.

e3x dy
dx

+3e3xy = e8x

Can the above equation be further simplified? Yes! From the
product rule we have

d(e3xy)
dx

= e3x dy
dx

+3e3xy

It follows that
d(e3xy)

dx
= e8x

Finally we can integrate both sides with respect to x to yield∫ d(e3xy)
dx

dx =
∫

e8xdx

from which we have

e3xy =
e8x

8
+C

and consequently

y =
e5x

8
+Ce−3x
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In this example, we have multiplied the equation by the integra-
tion factor e3x. Why did we use e3x?

This form was chosen specifically to allow the two terms in the
LHS of the original equation

dy
dx

+3y

to be merged, i.e. (
dy
dx

+3y
)

e3x =
d(e3xy)

dx

So is there a general form of this fortuitous multiplicative factor,
F?

The above equation is in fact a special case of the general
form

dy
dx

+Py = Q (7.2)

where P and Q are functions of x. The integration factor, F , is a
function such that the following equation is satisfied

F
(

dy
dx

+Py
)
=

d(Fy)
dx

Application of the product rule

d(Fy)
dx

= F
dy
dx

+ y
dF
dx

we have that
F

dy
dx

+ y
dF
dx

= F
dy
dx

+FPy

and consequently
dF
dx

= FP



MORE FIRST-ORDER DIFFERENTIAL EQUATIONS 98

Separating the F-factors and P-factors yields

1
F

dF
dx

= P

Integrating with respect to x we have

lnF =
∫

Pdx

and consequently

F = e
∫

Pdx (7.3)

Returning back to Eq. (7.2).

F
[

dy
dx

+Py
]
=

d(Fy)
dx

= FQ

Therefore

y = F−1
∫

FQdx (7.4)

Recall Eq. (7.1). In this case

P = 3, Q = e5x, F = e
∫

Pdx = e3x

and so

y = e−3x
∫

e3xe5xdx = e−3x
(

e8x
8

+C
)
=

e5x

8
+Ce−3x

Challenge 7.1 Solve the ordinary differential equation

x
dy
dx

+ y = x3
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After some rearranging we get

dy
dx

+
y
x
= x2

In this case

P = x−1, Q = x2, F = e
∫

Pdx = elnx = x

and so

y = x−1
∫

x3dx = x−1
(

x4

4
+C
)
=

x3

4
+

C
x

Challenge 7.2 Solve the ordinary differential equation

(x+1)
dy
dx

+ y = (x+1)2

After some rearranging we get

dy
dx

+
y

x+1
= x+1

In this case

P = (x+1)−1, Q = x+1, F = e
∫

Pdx = eln(x+1) = x+1

and so

y = (x+1)−1
∫
(x+1)2dx = (x+1)−1

(
(x+1)3

3
+C
)

therefore

y =
(x+1)2

3
+

C
x+1

Challenge 7.3 Solve the ordinary differential equation

(1− x2)
dy
dx

− xy = 1
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After some rearranging we get

dy
dx

− xy
1− x2 =

1
1− x2

In this case

P =
−x

1− x2 , Q =
1

1− x2 , F = e
∫

Pdx = e
∫ −x(1−x2)−1dx

Making the substitution u = 1− x2 (where u′ =−2x)∫ −x
1− x2 dx =

∫ −x
uu′

du =
∫ 1

2u
du = lnu1/2

and so
F = e

∫
Pdx = eln[(1−x2)1/2] = (1− x2)1/2

Finally we can say that

y=(1−x2)−1/2
∫

(1− x2)1/2

1− x2 dx=(1−x2)−1/2
∫
(1−x2)−1/2dx

and therefore
y =

arcsinx+C
(1− x2)1/2

7.3 Solving Bernoulli equations
Consider non-linear equations of the form

dy
dx

+Ry = Syn

otherwise known as the Bernoulli equation. Can we use the
integration-factor method to solve this?
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Divide both sides by yn

y−n dy
dx

+Ry1−n = S

and substitute z = y1−n. Note that from the chain rule

dz
dx

=
d(y1−n)

dx
=

dy
dx

dx
dy

d(y1−n)

dx
=

dy
dx

d(y1−n)

dy
= (1−n)y−n dy

dx

Therefore we can say

dz
dx

+(1−n)Rz = (1−n)S

Substituting P = (1−n)R and Q = (1−n)S we see that

dz
dx

+Pz = Q

hence we can use integration factors as before.

Challenge 7.4 Solve the ordinary differential equation

dy
dx

+
y
x
= xy2

Divide both sides by y2

y−2 dy
dx

+
y−1

x
= x

Substitute z = y−1 (note that z′ =−y′y−2)

dz
dx

− z
x
=−x

In this case

P =−x−1, Q =−x, F = e
∫

Pdx = e− lnx = x−1
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and so
z =−x

∫
dx = x(−x+C) =−x2 + xC

and
y = (Cx− x2)−1

Challenge 7.5 Solve the ordinary differential equation

x2y− x3 dy
dx

= y4 cosx

Rearrange into the general form

dy
dx

− y
x
=−y4

x3 cosx

Divide both sides by y4

y−4 dy
dx

− y−3

x
=−cosx

x3

Substitute z = y−3 (note that z′ =−3y′y−4)

dz
dx

+
3z
x
=

3cosx
x3

In this case

P =
3
x
, Q =

3cosx
x3 , F = e

∫
Pdx = e3lnx = x3

and so
z = x−3

∫
3cosxdx =

3sinx+C
x3

and
y =

x
(3sinx+C)1/3
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7.4 Problem sheet
Problem 7.1 (see Worked Solution 7.1)

Solve the following linear differential equations

a) x
dy
dx

− y = x3 +3x2 −2x

b)
dy
dx

+ y tanx = sinx

c) x
dy
dx

− y = x3 cosx given that y = 0 when x = π.

d) (1+ x2)
dy
dx

+3xy = 5x given that y = 2 when x = 1.

Problem 7.2 (see Worked Solution 7.2)

Solve the following Bernoulli equations

a)
dy
dx

+ y = xy3

b)
dy
dx

+ y = y4ex

c)
dy
dx

−2y tanx = y2 tan2 x

d)
dy
dx

+ y tanx = y3 sec4 x

7.5 Worked solutions
Worked Solution 7.1 (see Problem 7.1)

x
dy
dx

− y = x3 +3x2 −2x
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First, rearrange to the standard form y′+Py = Q

dy
dx

− y
x
= x2 +3x−2

Find the integration factor, F , such that F
(

dy
dx

+Py
)
=

d(Fy)
dx

∴ F = e
∫

Pdx = e
∫ −x−1dx = e− lnx = x−1

Multiplying both sides of the differential equation by F

1
x

dy
dx

− y
x2 = x+3− 2

x

which reduces to
d(y/x)

dx
= x+3− 2

x

It follows that y = x
(

x2

2
+3x−2lnx+C

)

b)
dy
dx

+ y tanx = sinx

∴ F = e
∫

Pdx = e
∫

tanxdx = elnsecx = secx

∴
d(ysecx)

dx
= secxsinx = tanx

∴ y = cosx(lnsecx+C)

c) x
dy
dx

− y = x3 cosx

∴
dy
dx

− y
x
= x2 cosx

∴ F = e
∫ −x−1dx = x−1
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∴
d(y/x)

dx
= xcosx

∴ y = x(xsinx− ∫
sinxdx)

∴ y = x2 sinx+ xcosx+Cx

Given that y = 0 when x = π, 0 =−π+Cπ, ∴C = 1

∴ y = x(xsinx+ cosx+1)

d) (1+ x2)
dy
dx

+3xy = 5x

∴
dy
dx

+
3xy

1+ x2 =
5x

1+ x2

∴ F = e
∫

3x(1+x2)−1dx

Setting u = 1+ x2, u′ = 2x

∴ F = e
∫

3/(2u)du = u3/2 = (1+ x2)3/2

∴
d
dx

[
y(1+ x2)3/2

]
= 5x(1+ x2)1/2

∴ y(1+ x2)3/2 =
∫

5x(1+ x2)1/2dx =
∫ 5u1/2

2
du =

5u3/2

3
+C

∴ y = (1+ x2)−3/2

[
5(1+ x2)3/2

3
+C

]
=

5
3
+C(1+ x2)−3/2

Given that y = 2 when x = 1, 2 = 5/3+2−3/2C

∴C = 23/2/3 = 0.9428
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Worked Solution 7.2 (see Problem 7.2)

a)
dy
dx

+ y = xy3

Divide both sides by y3

y−3 dy
dx

+ y−2 = x

Set z = y−2.

dz
dx

=
dz
dy

dy
dx

=−2y−3 dy
dx

∴
−1
2

dz
dx

+ z = x

∴
dz
dx

−2z =−2x

∴ F = e
∫ −2dx = e−2x

∴
d(ze−2x)

dx
=−2xe−2x

∴ ze−2x = xe−2x −
∫

e−2x = e−2x
(

x+
1
2

)
+C

∴ y−2 ≡ z = x+
1
2
+Ce2x

b)
dy
dx

+ y = y4ex

y−4 dy
dx

+ y−3 = ex

Set z = y−3

∴
dz
dx

=
dz
dy

dy
dx

=−3y−4 dy
dx
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∴
dz
dx

−3z =−3ex

∴ F = e
∫ −3dx = e−3x

∴
d(ze−3x)

dx
=−3e−2x

∴ ze−3x =
3e−2x

2
+C

∴ y−3 ≡ z =
3ex

2
+Ce3x

c)
dy
dx

−2y tanx = y2 tan2 x

y−2 dy
dx

−2y−1 tanx = tan2 x

Set z = y−1

∴
dz
dx

=
dz
dy

dy
dx

=−y−2 dy
dx

∴
dz
dx

+2z tanx =− tan2 x

∴ F = e
∫

2tanxdx = e2lnsecx = sec2 x

∴
d(zsec2 x)

dx
=−sec2 x tan2 x

∴ zsec2 x =−
∫

sec2 x tan2 xdx

Substitute u = tanx, noting that u′ = sec2 x
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∴ zsec2 x =−
∫

u2du =−u3

3
+C

∴ y−1 = z =−sin2 x tanx
3

+C cos2 x

d)
dy
dx

+ y tanx = y3 sec4 x

∴ y−3 dy
dx

+ y−2 tanx = sec4 x

Set z = y−2

∴
dz
dx

=
dz
dy

dy
dx

=−2y−3 dy
dx

∴
dz
dx

−2z tanx =−2sec4 x

∴ F = e
∫ −2tanxdx = e2lncosx = cos2 x

∴
d(zcos2 x)

dx
=−2sec2 x

∴ zcos2 x =−2tanx+C

∴ y−2 ≡ z = sec2 x(C−2tanx)
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Second-order differential
equations

8.1 Learning outcomes
You should be able to:

• Find the general solutions of homogenous, linear, constant
coefficient, second-order differential equations.

• Write solutions in terms of exponential, hyperbolic and
trigonometric functions as appropriate.

• Explain why the general solution, for when the roots of the
auxiliary equation are equal, takes the form
y = (A+Bx)emx.

109



SECOND-ORDER DIFFERENTIAL EQUATIONS 110

8.2 Solutions can be additions of alter-
native solutions

Consider the generalised linear, constant coefficient, differential
equation

a
d2y
dx2 +b

dy
dx

+ cy = f (x)

where a, b and c are constant coefficients.

The above equation is said to be homogenous when f (x) = 0,
such that

a
d2y
dx2 +b

dy
dx

+ cy = 0 (8.1)

This week, we will focus on the homogenous form.

Let y = u and y = v be two solutions of the equation.

It follows that

a
d2u
dx2 +b

du
dx

+ cu = 0 and a
d2v
dx2 +b

dv
dx

+ cv = 0

Adding these together leads to

a
d2(u+ v)

dx2 +b
d(u+ v)

dx
+ c(u+ v) = 0

which indicates (comparing to our original equation) that y =
u+ v.

This seems a trivial point but it is necessary to show that new
solutions to differential equations can be obtained by adding al-
ternative solutions together.
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8.3 A general solution in terms of expo-
nentials

Consider Eq. (8.1) with a = 0 leads to

b
dy
dx

+ cy = 0

rearranging leads to
1
y

dy
dx

=−c
b

Integrating both sides with respect to x

y = Ae−(c/b)x (8.2)

where A is an integration constant.
Let us try y = Aemx as solution to our original second-order dif-
ferential equation

a
d2y
dx2 +b

dy
dx

+ cy = 0

where m is yet to be defined.

Substituting Eq. (8.2) into the differential equation leads to

am2Aemx +bmAemx + cAemx = 0

which reduces to obtain

am2 +bm+ c = 0

The above equation is often referred to as the auxiliary equa-
tion.
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It follows that

m =
−b±

√
b2 −4ac

2a

Let

m1 =
−b+

√
b2 −4ac

2a
m2 =

−b−
√

b2 −4ac
2a

(8.3)

We have shown that Eq. (8.1) has two solutions

y = Aem1x and y = Bem2x

But neither of the above are general solutions to Eq. (8.1) be-
cause they have only one constant. A general solution to a second-
order differential equation must have two integration constants.
Such a solution can be obtained by adding the two above equa-
tions. Indeed, the general solution to Eq. (8.1) is

y = Aem1x +Bem2x (8.4)

where m1 and m2 are found from Eq. (8.3).

8.4 Hyperbolic form
So for the equation

a
d2y
dx2 +b

dy
dx

+ cy = 0

the general solution is

y=Aexp

[(
−b+

√
b2 −4ac

2a

)
x

]
+Bexp

[(
−b−

√
b2 −4ac

2a

)
x

]
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Recalling that

coshx =
ex + e−x

2
and sinhx =

ex − e−x

2

it follows that

y = e−
bx
2a

{
C cosh

[(√
b2−4ac

2a

)
x
]
+Dsinh

[(√
b2−4ac

2a

)
x
]}

8.5 Trigonometric form
Again another way to write the previous equation is

y = e−
bx
2a

{
C cosh

[(
i
√

4ac−b2

2a

)
x
]
+Dsinh

[(
i
√

4ac−b2

2a

)
x
]}

Recalling that

cosx =
eix + e−ix

2
and sinx =

eix − e−ix

i2

which leads us to

cosh ix = cosx and sinh ix = isinx

∴ y = e−
bx
2a

{
C cos

[(√
4ac−b2

2a

)
x
]
+E sin

[(√
4ac−b2

2a

)
x
]}

Note that when b2 < 4ac the roots of the auxiliary equation are
complex (recall Eq. (8.3)). When the roots are complex it is
better to write the general solution in the above trigonometric
form.
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Challenge 8.1 Solve the ordinary differential equation

d2y
dx2 +3

dy
dx

+2y = 0

Substituting y = Aemx it is found that

m2 +3m+2 = 0 = (m+2)(m+1)

So m =−2 or −1

∴ y = Ae−2x +Be−x

Another way to write this is

y = e−3x/2(Ae−x/2 +Bex/2)

∴ y = e−3x/2 [C cosh(x/2)+Dsinh(x/2)]

Challenge 8.2 Solve the ordinary differential equation

d2y
dx2 +5

dy
dx

+6y = 0

Substituting y = Aemx it is found that

m2 +5m+6 = 0 = (m+2)(m+3)

So m =−2 or −3

∴ y = Ae−2x +Be−3x

Another way to write this is

y = e−5x/2(Aex/2 +Be−x/2)

∴ y = e−5x/2 [C cosh(x/2)+Dsinh(x/2)]
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Challenge 8.3 Solve the ordinary differential equation

d2y
dx2 −2

dy
dx

+10y = 0

Substituting y = Aemx it is found that

m2 −2m+10 = 0

∴ m =
2±

√
4−40
2

= 1± i3

Because of complex roots, we should use the trigonometric form

∴ y = ex(Acos3x+Bsin3x)

Challenge 8.4 Solve the ordinary differential equation

d2y
dx2 +4

dy
dx

+9y = 0

Substituting y = Aemx it is found that

m2 +4m+9 = 0

∴ m =
−4±

√
16−36

2
=−2± i

√
5

Because of complex roots, we should use the trigonometric form

∴ y = e−2x(Acos
√

5x+Bsin
√

5x)

Challenge 8.5 Solve the ordinary differential equation

d2y
dx2 +6

dy
dx

+9y = 0
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Substituting y = Aemx it is found that

m2 +6m+9 = 0

It follows that
(m+3)(m+3) = 0

So m =−3
∴ y = Ae−3x

But there is only one constant. So this is not the general solution.

8.6 Equal roots to the auxiliary equation
The situation that occurs in Example 3 happens because the aux-
iliary equation has equal roots. Referring back to Eq. (8.3), it
can be seen that for our general equation

a
d2y
dx2 +b

dy
dx

+ cy = 0

the roots to the auxiliary equation

am2 +bm+ c = 0

are equal when
b2 = 4ac

To obtain a general solution with two constants for the special
case when b2 = 4ac, it is necessary to find an alternative solution
to the basic exponential form given in Eq. (8.2).

Let us consider a second solution of the form

y = u(x)emx

Substituting into Eq. (8.1) leads to

a
d2

dx2 (uemx)+b
d
dx

(uemx)+ cuemx = 0 (8.5)
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The first and second-order derivatives can be expanded using
product rule

d
dx

(uemx) = (mu+u′)emx

d2

dx2 (uemx) =
d
dx

(
d
dx

(uemx)

)
=

d
dx

(
(mu+u′)emx)

and consequently

d2

dx2 (uemx) = (m2u+2mu′+u′′)emx

Substituting into Eq. (8.5) leads to

a(m2u+2mu′+u′′)+b(mu+u′)+ cu = 0

Collecting derivatives of common order

au′′+(2am+b)u′+(am2 +bm+ c)u = 0

Recall, the case we are interested in is when b2 = 4ac. In this
case, from Eq. (8.3), m =−b/2a, which on substitution into the
above equation leads to

au′′+
(

c− b2

4a

)
u = 0

But of course, b2 = 4ac, so

u′′ = 0

which on integration leads to

u = A+Bx

Therefore a general solution to Eq. (8.1) for this case is seen to
be

y = (A+Bx)emx (8.6)
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8.7 Another way to study the equal roots
case

Another way of looking at this is as follows. Consider the equa-
tion

y = Aemx +Benx

where n = m+δm.

Factorising the emx term leads to

y = (A+Beδmx)emx

Recall the exponential series

ex = 1+ x+
x2

2!
+

x3

3!
+ . . .

It follows that

eδmx = 1+δmx+
(δmx)2

2!
+

(δmx)3

3!
+ . . .

Now if δm ≪ 1
eδmx ≈ 1+δmx (8.7)

and consequently

y = [A+B(1+δmx)]emx

Setting C = A+B and D = Bδm then yields

y = (C+Dx)emx

So it can be said that

lim
m→n

{Aemx +Benx}= (C+Dx)emx (8.8)
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Challenge 8.6 Solve the ordinary differential equation

d2y
dx2 +6

dy
dx

+9y = 0

Substituting y = Aemx it is found that

m2 +6m+9 = 0

It follows that
(m+3)(m+3) = 0

So both roots are m =−3

∴ y = (A+Bx)e−3x

Challenge 8.7 Solve the ordinary differential equation

d2y
dx2 +4

dy
dx

+4y = 0

Substituting y = Aemx it is found that

m2 +4m+4 = 0

It follows that
(m+2)(m+2) = 0

So both roots are m =−2

∴ y = (A+Bx)e−2x

8.8 Problem sheet
Problem 8.1 (see Worked Solution 8.1)
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Find the general solution of
d2y
dx2 −5

dy
dx

+6y = 0

Problem 8.2 (see Worked Solution 8.2)

Find the particular solution of
d2y
dx2 +7

dy
dx

+6y = 0

given that y(0) = 0 and y′(0) = 5.

Problem 8.3 (see Worked Solution 8.3)

Solve
d2y
dx2 +6

dy
dx

+9y = 0

Problem 8.4 (see Worked Solution 8.4)

Solve
d2y
dx2 +9y = 0 given that y(0) = 2 and y(π/6) = 3.

Problem 8.5 (see Worked Solution 8.5)

Solve
d2y
dx2 −9y = 0 given that y(0) = 0 and y′(0) = 6.

Problem 8.6 (see Worked Solution 8.6)

Solve
d2y
dx2 +2

dy
dx

+8y = 0

Problem 8.7 (see Worked Solution 8.7)

Solve 3
d2y
dx2 −6

dy
dx

+4y = 0

given that y(0) = 1 and y′(π/2
√

3) = 0.
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8.9 Worked solutions
Worked Solution 8.1 (see Problem 8.1)

d2y
dx2 −5

dy
dx

+6y = 0

Try y = Aemx

∴ m2Aemx −5mAemx +6Aemx = 0

∴ m2 −5m+6 = 0

∴ m =
5±

√
25−24
2

= 2 or 3

∴ y = Ae2x +Be3x

Worked Solution 8.2 (see Problem 8.2)

d2y
dx2 +7

dy
dx

+6y = 0

∴ m2 +7m+6 = 0

∴ m =
−7±

√
49−24

2
=−6 or -1

∴ y = Ae−6x +Be−x

∴
dy
dx

=−6Ae−6x −Be−x

Given that y(0) = 0, it can be seen that A =−B

Given that y′(0) = 5, we get 5 =−6A−B =−6A+A =−5A
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∴ A =−1 and B = 1

∴ y = e−x − e−6x

Worked Solution 8.3 (see Problem 8.3)

d2y
dx2 +6

dy
dx

+9y = 0

∴ m2 +6m+9 = 0

∴ m =
−6±

√
36−36

2
=−3

Because there is only one root, y = (A+Bx)e−3x

Worked Solution 8.4 (see Problem 8.4)

d2y
dx2 +9y = 0

∴ m2 +9 = 0

∴ m =±i3

∴ y = Aei3x +Be−i3x

∴ y =C cos3x+Dsin3x

Given that y(0) = 2, it can be said that C = 2

Given that y(π/6) = 3, it can be said that D = 3

∴ y = 2cos3x+3sin3x

Worked Solution 8.5 (see Problem 8.5)
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d2y
dx2 −9y = 0

∴ m2 −9 = 0 and consequently m =±3

∴ y = Ae3x +Be−3x

∴ y =C cosh3x+Dsinh3x

∴
dy
dx

= 3C sinh3x+3Dcosh3x

Given that y(0) = 0, it can be seen that C = 0.

Given that y′(0) = 6, it can be seen that 6 = 3D and D = 2.

∴ y = 2sinh3x

Worked Solution 8.6 (see Problem 8.6)

d2y
dx2 +2

dy
dx

+8y = 0

∴ m2 +2m+8 = 0

∴ m =
2±

√
4−32
2

=−1± i
√

7

∴ y = Ae(−1+i
√

7)x +Be(−1−i
√

7)x = e−x
(

Aei
√

7x +Be−i
√

7x
)

∴ y = e−x (C cos
√

7x+Dsin
√

7x
)

Worked Solution 8.7 (see Problem 8.7)

3
d2y
dx2 −6

dy
dx

+4y = 0
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∴ 3m2 −6m+4 = 0

∴ m =
6±

√
36−48
6

= 1± i/
√

3

∴ y = ex [Acos(x/
√

3)+Bsin(x/
√

3)
]

∴
dy
dx

= ex
[
(A+B/

√
3)cos(x/

√
3)+(B−A/

√
3)sin(x/

√
3)
]

Given that y(0) = 1 it can be seen that A = 1.

Given that y′(π/2
√

3) = 0 it can be seen that

∴ 0 = (1+B/
√

3)cos(π/6)+(B−1/
√

3)sin(π/6)

∴ 0 =

√
3

2
+

B
2
+

B
2
− 1

2
√

3
from which B =− 1√

3

∴ y = ex
[

cos(x/
√

3)− 1√
3

sin(x/
√

3)
]
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More second-order
differential equations

9.1 Learning outcomes
You should be able to:

• Explain why the general solution of a non-homogenous,
linear, constant coefficient, second-order differential equa-
tion is equal to the solution to the homogenous equivalent
(the complementary function) plus the so-called particular
integral.

• Appropriately speculate about the form of particular inte-
grals for given non-homogenous equations.

125
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9.2 Complementary functions and par-
ticular integrals

Consider the generalised linear, constant coefficient, differential
equation

ay′′+by′+ cy = f (x) (9.1)

where a, b and c are constant coefficients.

Recall from the previous lecture that solutions to differential
equations can be added together to create new solutions. Con-
sider two functions, yh and yp, which satisfy

ay′′h +by′h + cyh = 0 (9.2)

ay′′p +by′p + cyp = f (x) (9.3)

Adding above equation leads to

a
d2(yh + yp)

dx2 +b
d(yh + yp)

dx
+ c(yh + yp) = f (x)

By comparison with Eq. (9.1), it can be seen that y = yh + yp.

Note that Eq. (9.2) is a homogenous version of Eq. (9.1). We
know how to get a general solution to Eq. (9.2). Given that
such a solution will have the two necessary unknown integration
constants, we are free to find solutions to Eq. (9.3) that are not
general. Particular solutions of Eq. (9.3) can be generalised by
adding general solutions of Eq. (9.2).

The general solution to Eq. (9.2) is known as the complemen-
tary function. The particular solution to Eq. (9.3) is known as
the particular integral. The general solution to Eq. (9.1) is equal
to the complementary function plus the particular integral.
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Challenge 9.1 Solve the ordinary differential equation

y′′−5y′+6y = 24

First let us find the complementary function (CF)

y′′h −5y′h +6yh = 0

The auxiliary equation is m2 −5m+6 = 0

Therefore (m−2)(m−3) = 0

It follows that yh = Ae2x +Be3x

Now lets obtain the particular integral (PI)

y′′p −5y′p +6yp = 24

What form of yp would satisfy the above equation?

Clearly, yp = 0 would not satisfy it. How about yp =C?

If yp = C, then y′p = 0 and y′′p = 0. It follows that 6C = 24,
therefore yp =C = 4.

The general solution to the original equation is therefore

y = yh + yp = Ae2x +Be3x +4

Challenge 9.2 Solve the ordinary differential equation

y′′−5y′+6y = x2

Recall that the CF is yh = Ae2x +Be3x
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For the PI, try yp =Cx2 +Dx+E

So y′p = 2Cx+D and y′′p = 2C

∴ 2C−5(2Cx+D)+6(Cx2 +Dx+E) = x2

Collect terms of x and x2

2C−5D+6E +(6D−10C)x+(6C−1)x2 = 0

Equating coefficients of x and x2

6C−1 = 0, 6D−10C = 0 and 2C−5D+6E = 0

It follows that C = 1/6, D = 5/18 and E = 19/108

Therefore y = Ae2x +Be3x +
x2

6
+

5x
18

+
19

108

Challenge 9.3 Solve the ordinary differential equation

y′′−5y′+6y = 2sin4x

Recall that the CF is yh = Ae2x +Be3x

For the PI, try yp =C cos4x+Dsin4x

So y′p =−4C sin4x+4Dcos4x

and y′′p =−16C cos4x−16Dsin4x

Substituting these back into the original equation

−16C cos4x−16Dsin4x+20C sin4x−20Dcos4x
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+6C cos4x+6Dsin4x = 2sin4x

Equating coefficients of cos4x: −16C − 20D + 6C = 0 there-
fore C =−2D

Equating coefficients of sin4x: −16D+20C+6D = 2

It follows that −16D−40D+6D = 2 and therefore D =−1/25
and C = 2/25

Therefore yp =
2

25
cos4x− 1

25
sin4x

and consequently y = Ae2x +Be3x +
2
25

cos4x− 1
25

sin4x

9.3 Solution by undetermined coefficients
In the above examples, we have been applying the so-called
method of undetermined coefficients.

The particular integral (PI), yp, of the differential equation

ay′′+by′+ cy = f (x)

is found by consideration of the following set of rules.

1) Basic Rule: If f (x) is one of the functions in the first column
of Table 9.1, choose the corresponding function yp in the second
column of Table 9.1 and determine its undetermined coefficients
by substituting yp and its derivatives back into the differential
equation.

2) Modification Rule: If a term in your choice of yp is a solu-
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tion of the homogenous equation (i.e., the differential equation
with f (x) = 0), then multiply your choice of yp by x. If your
choice of yp multiplied by x is also a solution of the homoge-
nous equation, then multiply by x2 and so on.

3) Sum Rule: If f (x) is a sum of functions listed in several lines
of the first column of Table 9.1, then choose yp to be a sum of
the functions in the corresponding lines of the second column of
Table 9.1.

Table 9.1: Recommended functional forms for particular inte-
grals.

Term in f (x) Choice for yp

αekx Cekx

αxn (n = 0,1, . . .) Cnxn +Cn−1xn−1 + . . .+C1x+C0
αcoskx C coskx+Dsinkx
αsinkx C coskx+Dsinkx
αeλx coskx eλx(C coskx+Dsinkx)
αeλx sinkx eλx(C coskx+Dsinkx)

Challenge 9.4 Solve the ordinary differential equation

y′′+4y = 8x2

To find the CF, solve y′′h +4yh = 0

The auxiliary equation is m2 +4 = 0

Therefore the CF is yh = Asin2x+Bcos2x

Using the “Basic Rule”, considering the 8x2 in the RHS (right-
hand-side) of the differential equation, from the above table it
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can be seen that the PI will take the form

yp =Cx2 +Dx+E and of course, y′′p = 2C

Substituting back into the original differential equation leads to

2C+4(Cx2 +Dx+E) = 8x2

Equating coefficients of x2, x and x0 it can be seen that 4C = 8,
4D = 0 and 2C+4E = 0

Therefore C = 2, D = 0 and E =−1.

Consequently it can be said that yp = 2x2 −1

So the general solution is:

y = Asin2x+Bcos2x+2x2 −1

Challenge 9.5 Solve the ordinary differential equation

y′′−3y′+2y = ex

To find the CF, solve y′′h −3y′h +2yh = 0

The auxiliary equation is m2−3m+2= 0 ⇒ (m−1)(m−2)= 0.

Therefore the CF is yh = Aex +Be2x

Using the “Basic Rule”, considering the ex in the RHS of the dif-
ferential equation, from the above table let us choose yp = Cex.
Substituting back into the differential equation leads to

Cex −3Cex +2Cex ̸= ex.
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Indeed yp ̸=Cex. But recall the “Modification Rule”. Therefore
try yp = Cxex. Substituting back into the differential equation
leads to (x+2)Cex −3(x+1)Cex +2xCex = ex

∴ (x+2)C−3(x+1)C+2xC = 1

Equating coefficients of x and x0

C−3C+2C = 0 and 2C−3C = 1

from which it is seen that C =−1.

Therefore the general solution is

y = Aex +Be2x − xex

Challenge 9.6 Solve the ordinary differential equation

y′′−2y′+ y = ex + x

To find the CF, solve y′′h −2y′h + yh = 0

The auxiliary equation is m2−2m+1= 0 ⇒ (m−1)(m−1)= 0.

Therefore the CF is yh = (A+Bx)ex

Using the “Sum Rule”, considering the ex + x term in the RHS
of the differential equation, try yp =Cex +Dx+E.

But a term in our choice of yp is one of the solutions to the
homogenous equation. From the “Modification Rule”, multiply
that term by x. Therefore try yp =Cxex +Dx+E.
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But still a term in our choice of yp is one of the solutions to
the homogenous equation. From the “Modification Rule”, mul-
tiply by that term by x again. Therefore try yp =Cx2ex+Dx+E.

y′p =C(x2 +2x)ex +D and y′′p =C(x2 +4x+2)ex

Substituting these into the differential equation yields

C(x2+4x+2)ex−2[C(x2+2x)ex+D]+Cx2ex+Dx+E = ex+x

Collecting terms

(2C−1)ex +(D−1)x+E −2D = 0

From which we can see that C = 1/2, D = 1 and E = 2.

∴ y = (A+Bx)ex +
x2ex

2
+ x+2

9.4 Problem sheet
Problem 9.1 (see Worked Solution 9.1)

Solve
d2y
dx2 +25y = 5x2 + x

Problem 9.2 (see Worked Solution 9.2)

Solve
d2y
dx2 −4y = 12e2x

Problem 9.3 (see Worked Solution 9.3)
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Solve
d2y
dx2 +6

dy
dx

+9y = 2e−2x

given that y(0) = 1 and y′(0) =−2.

Problem 9.4 (see Worked Solution 9.4)

Solve
d2y
dx2 +2

dy
dx

+ y = 4sinhx

9.5 Worked solutions
Worked Solution 9.1 (see Problem 9.1)

d2y
dx2 +25y = 5x2 + x

First find the complementary function (CF), u, where

y′′h +25yh = 0

m2 +25 = 0

∴ m =±i5

∴ yh = Asin5x+Bcos5x

Next, find the particular integral (PI), yp, where

y′′p +25yp = 5x2 + x

Try yp =Cx2 +Dx+E: ∴ y′p = 2Cx+D and y′′p = 2C

∴ 2C+25(Cx2 +Dx+E) = 5x2 + x
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Grouping coefficients of x:

2C+25E +(25D−1)x+(25C−5)x2 = 0

It follows that C = 1/5, D = 1/25, E =−2/125

∴ yp =
x2

5
+

x
25

− 2
125

∴ y = yh + yp = Asin5x+Bcos5x+
x2

5
+

x
25

− 2
125

Worked Solution 9.2 (see Problem 9.2)

d2y
dx2 −4y = 12e2x

m2 −4 = 0, and so the CF, yh = Ae2x +Be−2x

y′′p −4yp = 12e2x

Try yp =Cxe2x, so y′p =C(1+2x)e2x and y′′p =C(4+4x)e2x

∴C(4+4x)e2x −4Cxe2x = 12e2x so C = 3

∴ y = (A+3x)e2x +Be−2x

Worked Solution 9.3 (see Problem 9.3)

Solve
d2y
dx2 +6

dy
dx

+9y = 2e−2x

m2 +6m+9 = 0 ⇒ (m+3)2 = 0

∴ yh = (A+Bx)e−3x
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yp =Ce−2x

∴ 4Ce−2x −12Ce−2x +9Ce−2x = 2e−2x and C = 2

∴ y = (A+Bx)e−3x +2e−2x

Given that y(0) = 1 and y′(0) =−2.

Now y′ = (B−3A−3Bx)e−3x −4e−2x

∴ 1 = A+2 and −2 = B−3A−4

∴ A =−1 and B =−1

y =−(1+ x)e−3x +2e−2x

Worked Solution 9.4 (see Problem 9.4)

Solve
d2y
dx2 +2

dy
dx

+ y = 4sinhx

m2 +2m+1 = 0 ⇒ (m+1)2 = 0

∴ yh = (A+Bx)e−x

Now sinhx = (ex − e−x)/2

So try yp =Cex +Dx2e−x

y′p =Cex +D(2x− x2)e−x

y′′p =Cex +D(2−4x+ x2)e−x
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∴Cex +D(2−4x+ x2)e−x +2Cex +2D(2x− x2)e−x

+Cex +Dx2e−x = 2(ex − e−x)

Collecting terms

(4C−2)ex +[D(2−4x+ x2)+2D(2x− x2)+Dx2 +2]e−x = 0

which simplifies to get (4C−2)ex +(2D+2)x2e−x = 0

From which we see that C = 1/2 and D =−1.

∴ y = (A+Bx− x2)e−x +
ex

2
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Series and approximations

10.1 Learning outcomes
You should be able to:

• Derive Maclaurin’s power series using polynomial fitting.

• Keep track of the order of truncation error using the O
notation.

• Derive power series expansions for a range of different
functions.

• Determine the radius of convergence of a given function
using knowledge of arithmetic, harmonic and geometric
series.

• Determine the radius of convergence of a given function
using D’Alembert’s ratio test.

138
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10.2 Maclaurin’s power series
Consider a function, f (x), which can be closely approximated by
fitting a polynomial function. This can be achieved as follows:

First f (x) is approximated using a fourth-order polynomial,
a0 +a1x+a2x2 +a3x3 +a4x4, such that it can be stated that

f (x)≈ a0 +a1x+a2x2 +a3x3 +a4x4 (10.1)

where the coefficients, a0, a1, a2, a3 are yet to be defined.
At present there is one equation and four unknowns (a0, a1,

a2,a3). To obtain more equations, consider the derivatives of
f (x):

f ′(x)≡ f (1)(x)≈ a1 +2a2x+3a3x2 +4a4x3

f ′′(x)≡ f (2)(x)≈ 2a2 +6a3x+12a4x2

f (3)(x)≈ 6a3 +24a4x

f (4)(x)≈ 24a4

By setting x = 0 it can be seen that:

a0 ≈ f (0)(0)

a1 ≈ f (1)(0)

a2 ≈
f (2)(0)

2

a3 ≈
f (3)(0)

6
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a4 ≈
f (4)(0)

24
which on substitution into Eq. (10.1) leads to

f (x)≈ f (0)(0)+ f (1)(0)x+ f (2)(0)
x2

2
+ f (3)(0)

x3

6
+ f (4)(0)

x4

24

Notice that the above equation can also be written using fac-
torials:

f (x)≈ f (0)(0)
x0

0!
+ f (1)(0)

x1

1!
+ f (2)(0)

x2

2!

+ f (3)(0)
x3

3!
+ f (4)(0)

x4

4!

(10.2)

such that it is also possible to state that

f (x)≈
4

∑
n=0

f (n)(0)
xn

n!
(10.3)

where f (n)(x) and f (n)(0) are defined by

f (n)(x) =
dn f
dxn and f (n)(0) =

dn f
dxn

∣∣∣∣
x=0

The Scottish mathematician, Colin Maclaurin, showed in the
early 18th century that the series in Eq. (10.3) becomes an exact
expression for f (x) when one considers an infinite number of
terms, i.e.,

f (x) =
∞

∑
n=0

f (n)(0)
xn

n!
(10.4)
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Eq. (10.4) above is now widely referred to as a power series
or the Maclaurin series. As will be shown in the subsequent ex-
ercise, the Maclaurin series can be used to generate approximate
asymptotic expansions for many of the different trigonometric
and hyperbolic functions previously discussed.

10.3 The big O notation
Consider the approximation given in Eq. (10.2). Given the exis-
tence of the power series in Eq. (10.4), it is possible to exchange
the ≈ sign in Eq. (10.2) for an = sign by including the truncation
error term, O(x5), i.e.,

f (x) = f (0)(0)
1
0!

+ f (1)(0)
x
1!

+ f (2)(0)
x2

2!

+ f (3)(0)
x3

3!
+ f (4)(0)

x4

4!
+O(x5)

In a similar way it is possible to state that:

f (x) = f (0)(0)+ f (1)(0)x+ f (2)(0)
x2

2
+ f (3)(0)

x3

6
+O(x4)

f (x) = f (0)(0)+ f (1)(0)x+ f (2)(0)
x2

2
+O(x3)

or even

f (x) = f (0)(0)+O(x)

The O term is often used to denote truncation error. If we
write O(xm), it is implied that the associated equation represents
a truncated series expansion and the error associated with trun-
cation is of “order” xm. Note that the truncated terms in this case
includes powers of x of order m or above. Therefore, if xm ≪ 1 it
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can be understood that the truncated terms associated with O(xm)
are likely to be negligible.

Keeping track of the order of truncation error enables a ro-
bust methodology for simplifying the mathematics where appro-
priate for given scientific applications. It is also very helpful for
determining limits of functions, as will be discovered later in this
module.

10.4 Power series expansions of some com-
mon functions

The power series can be used to derive infinite series representa-
tions of many common functions.

10.4.1 Power series of ex

Recall the power series in Eq. (10.4). Now consider f (x) = ex.
In this case, f n(x) = ex and f n(0) = 1. It therefore follows that:

ex =
∞

∑
n=0

xn

n!
= 1+ x+

x2

2
+O(x3)

10.4.2 Power series of sinx

Now consider f (x) = sinx where:

f (0)(x) = sinx, f (1)(x) = cosx, f (2)(x) =−sinx,
f (3)(x) =−cosx, f (4)(x) = sinx, f (5)(x) = cosx,
f (6)(x) =−sinx, f (7)(x) =−cosx,

and
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f (0)(0) = 0, f (1)(0) = 1, f (2)(0) = 0,
f (3)(0) =−1, f (4)(0) = 0, f (5)(0) = 1,
f (6)(0) = 0, f (7)(0) =−1,

and from Eq. (10.4) it can be said that

sinx = x− x3

3!
+

x5

5!
− x7

7!
+O(x9)

However, it can be seen there are at least two challenges
for specifying an appropriately simplified infinite series for this
function. The first is that every other term is zero, the second is
that every other non-zero term is negative.

10.4.3 Tricks with series
Use (−1)n to alternate signs. This works because (−1)0 = 1,
(−1)1 =−1, (−1)2 = 1, (−1)3 =−1 and so on. For example,

∞

∑
n=0

(−1)nbn = b0 −b1 +b2 −b3 + . . .

Use 2n to only include even terms. Sometimes in a series all
the odd terms vanish, that is b1 = b3 = b5 = 0 and so on. But
note that

b0 +b2 +b4 +b6 + . . .=
∞

∑
n=0

b2n

Use 2n+1 to only include odd terms. Sometimes in a series
all the even terms vanish, that is b0 = b2 = b4 = 0 and so on. But
note that

b1 +b3 +b5 +b7 + . . .=
∞

∑
n=0

b2n+1
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10.4.4 sinx revisited
Recall that

sinx = x− x3

3!
+

x5

5!
− x7

7!
+O(x9) (10.5)

Because only odd terms are present, the infinite series will
take the form

∞

∑
n=0

b2n+1

and given that the odd values of n are negative we can further
specify that the form will be something like

∞

∑
n=0

(−1)nb2n+1 (10.6)

By comparing Eq. (10.6) with Eq. (10.5) it can be seen that
bn = xn/n! and b2n+1 = x2n+1/(2n+1)!, and finally that

sinx =
∞

∑
n=0

(−1)n

(2n+1)!
x2n+1

10.4.5 Power series of (a+ x)m

Consider the function f (x) = (a+ x)m. It can be seen that
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f (0)(x) = (a+ x)m,

f (1)(x) = m(a+ x)m−1,

f (2)(x) = m(m−1)(a+ x)m−2,

f (3)(x) = m(m−1)(m−2)(a+ x)m−3,

f (m)(x) = m!,

f (m+1)(x) = m!(m−m)(a+ x)−1 = 0,

f (m+2)(x) = m!(m−m)(m−m−1)(a+ x)−2 = 0,

and

f (0)(0) = am

f (1)(0) = mam−1

f (2)(0) = m(m−1)am−2

f (3)(0) = m(m−1)(m−2)am−3

f (m)(0) = m!

f (m+1)(0) = 0

f (m+1)(0) = 0

with all higher order terms also being zero.
So it can be seen that
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f n(0) =


m!am−n

(m−n)!
, n ≤ m

0, n > m

from which it follows that

(a+ x)m =
m

∑
n=0

m!am−n

(m−n)!
xn

n!
≡

m

∑
n=0

(
m
n

)
am−nxn

which is the Binomial theorem.

10.5 Convergence and divergence
Let SN be the sum of the first N terms, an, in a series, i.e.,

SN =
N

∑
n=1

an

If SN approaches a definite value as N → ∞, then the series is
considered to be convergent. If SN does not approach a definite
number as N → ∞, the series is said to be divergent.

10.5.1 Arithmetic series example
Consider the arithmetic series

SN =
N

∑
n=1

n = 1+2+ . . .+(N −1)+N (10.7)

In the late 1700s, a primary school teacher wanted a rest from
the children and so asked them to find the sum of all the numbers
from 1 to 100. Unfortunately for the teacher, one of his students
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was Carl Friedrich Gauss, who solved the problem in less than
five minutes. The same approach can be used to determine SN in
Eq. (10.7).

Gauss noticed that if N is an even number, he can split the
numbers into two groups like:

1 +N
+2 +(N −1)
+3 +(N −2)
+4 +(N −3)
+ . . . + . . .
+(N/2−2) +(N/2+3)
+(N/2−1) +(N/2+2)
+N/2 +(N/2+1)

he could add them horizontally to get N +1:

1+N = N +1

2+(N −1) = N +1

3+(N −2) = N +1

(N/2−2)+(N/2+3) = N +1

(N/2−1)+(N/2+2) = N +1

N/2+(N/2+1) = N +1

Given that there will be N/2 pairs of terms, it can then be
understood that

SN =
N

∑
n=1

n =
N(N +1)

2
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Alternatively, if N is an odd number there will be (N −1)/2
pairs plus an additional solo term in the middle of value (N-
1)/2+1. It therefore follows that for odd values of N it can also
be said that

SN =
N

∑
n=1

n =
(N −1)(N +1)

2
+

(N −1)
2

+1 =
N(N +1)

2

It can then be seen that the arithmetics series is an example
of a divergent series because

lim
N→∞

SN = ∞

10.5.2 Harmonic series example
Another simple series to consider is the harmonic series

SN =
N

∑
n=1

1
n

Each term added is smaller than the last, but the sum in-
creases forever as N → ∞ and never converges to a value. Hence
this series is also divergent.

10.5.3 Geometric series example
Now consider the geometric series

SN =
N

∑
n=0

λ
n

Note that

SN = 1+λ+λ
2 + . . .+λ

N−1 +λ
N
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Multiplying both sides by λ then leads to

λSN = λ+λ
2 + . . .+λ

N−1 +λ
N +λ

N+1

from which it can be seen that

λSN = SN −1+λ
N+1

and further that

SN =
λN+1 −1

λ−1
From this we can see that if |λ|< 1

lim
N→∞

SN =
1

1−λ

Therefore it can be said that the geometric series is condi-
tionally convergent, the condition being that |λ|< 1.

10.5.4 D’Alembert’s ratio test
For the above examples, it was possible to determine whether the
series was convergent by evaluating closed-form expressions for
the series (as was done for the arithmetic and geometric series) or
by looking for obvious signs of divergence in the series (as was
done for the harmonic series). However, for many series these
simple techniques are not possible. Instead, alternative conver-
gence tests are required. Here we will consider D’Alembert’s ra-
tio test. Jean-Baptiste le Rond D’Alembert was a famous math-
ematician, philosopher and musician from 18th century France.

Consider the series

S =
∞

∑
n=0

an

and the ratio term
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L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
The ratio test states:

• if L < 1 then the series is convergent;

• if L > 1 then the series is divergent;

• if L = 1 or the limit fails to exist, then the test is incon-
clusive, because there exist both covergent and divergent
series that satisfy this case.

Consider the case when an = bnxn, then

L = lim
n→∞

∣∣∣∣bn+1xn+1

bnxn

∣∣∣∣= lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ |x|
The series is therefore convergent if

lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ |x|< 1

so that a necessary condition of convergence is that

|x|< lim
n→∞

∣∣∣∣ bn

bn+1

∣∣∣∣
In this way, lim

n→∞
|bn/bn+1| represents the radius of conver-

gence for the series ,
∞

∑
n=0

bnxn.
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10.6 Problem sheet
Problem 10.1 (see Worked Solution 10.1)

Derive the power series expansions for the following functions:

a) cosx b) ln(1+ax) c) ln(1+ x2)

Problem 10.2 (see Worked Solution 10.2)

Using results obtained during class and results obtained in Ques-
tion 1 above, determine the following limits:

a) lim
x→0

sinx
x

b) lim
x→0

1− cosx
x2 c) lim

x→0

ln(1+ax)
x

d) lim
x→0

1−2ex + e2x

x2 e*) lim
x→1

lnx
x2 −1

*For part e) make the substitution x = y+ 1 and use the series
expansion for ln(1+ y).

Problem 10.3 (see Worked Solution 10.3)

Determine whether the functions listed in Question 1 above are
convergent and determine their radii of convergence where ap-
propriate.

Problem 10.4 (see Worked Solution 10.4)

Approximate the integral,
∫ 1

0

1
1+ εxπ

dx, to order ε2.
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10.7 Worked solutions
Worked Solution 10.1 (see Problem 10.1)

Recall that f (x) =
∞

∑
n=0

f (n)(0)
xn

n!

a) Obtain the series expansion for cosx

y = cosx y(0) = 1
y(1)(x) =−sinx y(1)(0) = 0
y(2)(x) =−cosx y(2)(0) =−1
y(3)(x) = sinx y(3)(0) = 0
y(4)(x) = cosx y(4)(0) = 1

from which it follows that cosx = 1− x2

2!
+

x4

4!
+O(x6)

Only the even terms are non-zero, ∴ cosx =
∞

∑
n=0

a2n

and the odd values of n are negative, ∴ cosx =
∞

∑
n=0

(−1)nb2n

It can now be seen that b2n =
x2n

(2n)!

Hence cosx =
∞

∑
n=0

(−1)nx2n

(2n)!

b) Obtain the series expansion for ln(1+ax)

y = ln(1+ax) y(0) = 0
y(1)(x) = a(1+ax)−1 y(1)(0) = a
y(2)(x) =−a2(1+ax)−2 y(2)(0) =−a2

y(3)(x) = 2a3(1+ax)−3 y(3)(0) = 2a3

y(4)(x) =−6a4(1+ax)−4 y(4)(0) =−3!a4
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from which it can be seen that y(n)(0) = (−1)n−1(n−1)!an

Hence it can be said that ln(1+ax) =
∞

∑
n=1

(−1)n+1(ax)n

n

Note especially that the summation is taken from n = 1 as the
zeroth term is zero.

c) Obtain the series expansion for ln(1+ x2)

Let y = ln(1+ x2) and u = x2.

It follows that y = ln(1+u) =
∞

∑
n=1

(−1)n+1un

n

Therefore ln(1+ x2) =
∞

∑
n=1

(−1)n+1x2n

n

Worked Solution 10.2 (see Problem 10.2)

a) Determine lim
x→0

sinx
x

Recall that sinx = x− x3

3!
+

x5

5!
+O(x7)

It follows that
sinx

x
= 1− x2

3!
+

x4

5!
+O(x6)

Therefore lim
x→0

sinx
x

= 1

b) Determine lim
x→0

1− cosx
x2

Recall that cosx = 1− x2

2!
+

x4

4!
+O(x6)
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It follows that
1− cosx

x2 =
1
2!

− x2

4!
+O(x4)

Therefore lim
x→0

1− cosx
x2 =

1
2

c) Determine lim
x→0

ln(1+ax)
x

Recall that ln(1+ax) = ax− a2x2

2
+O(x3)

It follows that
ln(1+ax)

x
= a− a2x

2
+O(x2)

Therefore lim
x→0

ln(1+ax)
x

= a

d) Determine lim
x→0

1−2ex + e2x

x2

Recall that ex = 1+ x+
x2

2!
+O(x3)

It follows that:

1−2ex + e2x = 1−2
(

1+ x+
x2

2!

)
+1+2x+

4x2

2!
+O(x3)

= 1−2+1−2x+2x− x2 +
4x2

2
+O(x3)

= x2 +O(x3)

Therefore lim
x→0

1−2ex + e2x

x2 = 1

e) Determine lim
x→1

lnx
x2 −1
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Let x= y+1 such that it can be said that lim
x→1

lnx
x2 −1

= lim
y→0

ln(y+1)
(y+1)2 −1

Recall that ln(y+1) = y− y2

2
+O(y3)

It follows that
ln(y+1)

(y+1)2 −1
=

y− y2/2+O(y3)

y2 +2y
=

y+O(y2)

2y+O(y2)

from which it can be seen that lim
y→0

ln(y+1)
(y+1)2 −1

=
1
2

Hence lim
x→1

lnx
x2 −1

=
1
2

Worked Solution 10.3 (see Problem 10.3)

Here we will apply the ratio test and determine L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
a) Recall cosx =

∞

∑
n=0

(−1)nx2n

(2n)!

from which it can be seen that an =
(−1)nx2n

(2n)!

and an+1 =
(−1)n+1x2n+2

(2n+2)!

Hence
an+1

an
=

(−1)n+1x2n+2

(2n+2)!
(2n)!

(−1)nx2n =
−x2

(2n+2)(2n+1)

and L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= 0

which is < 1, from which it can be understood that cosx is un-
conditionally convergent.
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b) Recall ln(1+ax) =
∞

∑
n=1

(−1)n+1(ax)n

n

from which it can be seen that an =
(−1)n+1(ax)n

n

and an+1 =
(−1)n+2(ax)n+1

n+1

Hence
an+1

an
=

(−1)n+2(ax)n+1

n+1
n

(−1)n+1(ax)n =− nax
n+1

and L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= ax

The series will converge when L < 1, which is true when |ax|<
1. So the radius of convergence is |a−1|.

c) Recall ln(1+ x2) =
∞

∑
n=1

(−1)n+1x2n

n

from which it can be seen that an =
(−1)n+1x2n

n

and an+1 =
(−1)n+2x2n+2

n+1

Hence
an+1

an
=

(−1)n+2x2n+2

n+1
n

(−1)n+1x2n =− nx2

n+1

and L = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= x2

The series will converge when L< 1, which is true when |x2|< 1.
So the radius of convergence is 1.

Worked Solution 10.4 (see Problem 10.4)

To evaluate the integral,
∫ 1

0

1
1+ εxπ

dx, to order ε2, it first neces-
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sary to find a series expansion for (1+ εxπ)−1.

y(ε) = (1+ εxπ)−1 y(0) = 1
y(1)(ε) =−xπ(1+ εxπ)−2 y(1)(0) =−xπ

y(2)(ε) = 2x2π(1+ εxπ)−3 y(2)(0) = 2x2π

from which it follows that
1

1+ εxπ
= 1− εxπ + ε

2x2π +O(ε3)

and hence∫ 1

0

1
1+ εxπ

dx =
∫ 1

0
1− εxπ + ε

2x2πdx+O(ε3)

=

[
x− εxπ+1

π+1
+

ε2x2π+1

2π+1

]1

0
+O(ε3)

= 1− ε

π+1
+

ε2

2π+1
+O(ε3)
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Partial differentiation

11.1 Learning outcomes
You should be able to:

• Understand the difference between partial derivatives and
complete derivatives.

• Use logarithmic differentiation to derive an expression for
the total derivative of a function in terms of the partial
derivatives of that function with respect to all its depen-
dent variables.

• Derive the same expression as above using a power series
expansion.

• Check solutions of partial differential equations.

158
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11.2 A result from logarithmic differen-
tiation

Challenge 11.1 Given that

d ln f
dx

=
1
f

d f
dx

(11.1)

provide an expression for the derivative of y with respect to x
where

y = PQ−2 sinR

and P, Q and R are all functions of x.

Taking the logs of both sides of the equation for y leads to

lny = ln
(
PQ−2 sinR

)
= lnP−2lnQ+ lnsinR

Given Eq. (11.1), differentiating both sides of the above
equation with respect to x leads to

1
y

dy
dx

=
1
P

dP
dx

− 2
Q

dQ
dx

+
1

sinR
d sinR

dx

The derivative of sinR with respect to x can be found by mak-
ing the substitution, u = sinR, and applying the chain-rule:

1
y

dy
dx

=
1
P

dP
dx

− 2
Q

dQ
dx

+
1

sinR
du
dR

dR
dx

from which it follows that

1
y

dy
dx

=
1
P

dP
dx

− 2
Q

dQ
dx

+
cosR
sinR

dR
dx

Multiplying both sides by y then leads to

dy
dx

= Q−2 sinR
dP
dx

−2PQ−3 sinR
dQ
dx

+PQ−2 cosR
dR
dx

(11.2)
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Challenge 11.2 Find the derivatives of y with respect to P, Q
and R and substitute these into Eq. (11.2).

dy
dP

= Q−2 sinR,
dy
dQ

=−2PQ−3 sinR,
dy
dR

= PQ−2 cosR

Substituting these into Eq. (11.2) leads to

dy
dx

=
dy
dP

dP
dx

+
dy
dQ

dQ
dx

+
dy
dR

dR
dx

(11.3)

The concept of partial derivatives
In fact there are two types of derivative in Eq. (11.3). The dy/dx,
dP/dx, dQ/dx and dR/dx represent the total derivatives of y, P,
Q and R with respect to x, respectively. However, note that y
is a function of P, Q and R, which in turn are functions of x.
Therefore, the term dy/dP represents the derivative of y with
respect to P whilst the other variables Q and R are assumed to be
independent of P (i.e., held constant).

This latter type of derivative is referred to as a partial deriva-
tive because y has been only partially differentiated with respect
to P, whilst the other variables have been held constant. A simi-
lar statement can be made for the dy/dQ and dy/dR terms. Con-
sequently a more appropriate way to write Eq. (11.3) is to say

dy
dx

=

(
∂y
∂P

)
Q,R

dP
dx

+

(
∂y
∂Q

)
P,R

dQ
dx

+

(
∂y
∂R

)
Q,P

dR
dx

(11.4)

Note that we should now only use d for total derivatives and
∂ for partial derivatives. Furthermore, because the symbol ∂ im-
plies that ∂y/∂P is the partial derivative of y where all other vari-
ables have been held constant, it is also reasonable to state more
simply that
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dy
dx

=
∂y
∂P

dP
dx

+
∂y
∂Q

dQ
dx

+
∂y
∂R

dR
dx

(11.5)

It is possible to generalize Eq. (11.5) to consider the total
derivative of y with respect to an unspecified independent vari-
able by writing

dy =
∂y
∂P

dP+
∂y
∂Q

dQ+
∂y
∂R

dR

such that if instead we wanted the total derivative of y with re-
spect to an alternative variable, say t, we can immediately see
that (in this case)

dy
dt

=
∂y
∂P

dP
dt

+
∂y
∂Q

dQ
dt

+
∂y
∂R

dR
dt

11.3 A result from power series
Recall the power series

f (x) =
∞

∑
n=0

f (n)(0)
n!

xn = f (0)+ f (1)(0)x+O(x2) (11.6)

The above equation shows an expansion of f (x) about a point
where x = 0. In a similar way, f (x) can be expanded about a
point where x is some arbitrary value, a, as follows:

f (x) =
∞

∑
n=0

f (n)(a)
n!

(x−a)n = f (a)+ f (1)(a)(x−a)+O((x−a)2)

which is known as the Taylor series.
Now consider the situation when a = z and x = z+δz. It then

follows that
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f (z+δz) =
∞

∑
n=0

f (n)(z)
n!

δzn = f (z)+ f (1)(z)δz+O(δz2)

from which it can be seen that the function, f , changes by a value
of f (z+δz)− f (z), as one moves from z to z+δz. Defining this
change in f as δ f , it follows that

δ f = f (1)(z)δz+O(δz2)

Now consider a function of three variables: P, Q and R, de-
fined by y = f (P,Q,R). If P increases by a small amount, δP,
there will be an associated small increase in y, δy, which can be
found from

δy = AδP+O(δP2)

where A is an, as yet, undefined constant.
There will also be changes in y if Q or R are increased in-

stead:

δy = BδQ+O(δQ2)

δy =CδR+O(δR2)

where B and C are additional unknown coefficients. Further-
more, if these changes in P, Q and R occur simultaneously, it
can be understood that

δy = AδP+BδQ+CδR+O(δP2,δQ2,δR2)
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Challenge 11.3 Consider a function y = f (P,Q,R).

From the Taylor series we can say that

δy = AδP+BδQ+CδR+O(δP2,δQ2,δR2)

a) Determine an expression for δy/δP when δQ = δR = 0.

b) Determine an expression for A in terms of a partial
derivative of y.

c) Determine similar expressions for B and C.

d) Determine an expression for δy in terms of partial derivatives
of y, with A, B and C all replaced with the expressions from b)
and c) above.

a)
δy
δP

= A+O(δP)

b) lim
δP→0

δy
δP

=

(
∂y
∂P

)
Q,R

therefore A =

(
∂y
∂P

)
Q,R

c) B =

(
∂y
∂Q

)
P,R

and C =

(
∂y
∂R

)
P,Q

d) δy=
(

∂y
∂P

)
Q,R

δP+

(
∂y
∂Q

)
P,R

δQ+

(
∂y
∂R

)
P,R

δR+O(δP2,δQ2,δR2)
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11.4 The concept of a total derivative
It can be seen that for a general function of multiple variables,
y = f (P,Q,R), the total derivative, dy, is obtained from

dy =
(

∂y
∂P

)
Q,R

dP+

(
∂y
∂Q

)
P,R

dQ+

(
∂y
∂R

)
P,R

dR

The above example is for a function of three different vari-
ables. However, the same idea holds for any number of variable
dependencies.

Consider a function, g = f (x,y,z, t), where x [L], y [L] and
z [L] are three orthogonal directions in space and t [T] is time.
The total derivative of g with respect to time should therefore be
written as

dg
dt

=
∂g
∂x

dx
dt

+
∂g
∂y

dy
dt

+
∂g
∂z

dz
dt

+
∂g
∂t

From the field of thermodynamics, consider internal energy
per unit mass, u [L2T−2], which is a function of pressure, P
[ML−1T−2], temperature, T [Θ], and molar volume, v [L3]. The
total derivative of u with respect to time is found from

du
dt

=

(
∂u
∂P

)
T,v

dP
dt

+

(
∂u
∂T

)
P,v

dT
dt

+

(
∂u
∂v

)
P,T

dv
dt

Furthermore, if u is a function of x, y, z and t, it can also be
seen that

∂u
∂x

=

(
∂u
∂P

)
T,v

∂P
∂x

+

(
∂u
∂T

)
P,v

∂T
∂x

+

(
∂u
∂v

)
P,T

∂v
∂x
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∂u
∂y

=

(
∂u
∂P

)
T,v

∂P
∂y

+

(
∂u
∂T

)
P,v

∂T
∂y

+

(
∂u
∂v

)
P,T

∂v
∂y

∂u
∂z

=

(
∂u
∂P

)
T,v

∂P
∂z

+

(
∂u
∂T

)
P,v

∂T
∂z

+

(
∂u
∂v

)
P,T

∂v
∂z

∂u
∂t

=

(
∂u
∂P

)
T,v

∂P
∂t

+

(
∂u
∂T

)
P,v

∂T
∂t

+

(
∂u
∂v

)
P,T

∂v
∂t

Dimensional analysis
At this stage it is useful to also to discuss the concept of dimen-
sional analysis. Four physical dimensions of interest are:

[M] - mass
[L] - length
[T] - time
[Θ] - temperature

Challenge 11.4 Given that Energy = Force × Distance and
Force = Mass × Acceleration, determine the physical dimen-
sions of an energy per unit mass.

First determine the dimensions of a force:

Force = Mass×Acceleration = [M]× [LT−2] = [MLT−2]

Now determine the dimensions of an energy:

Energy = Force×Distance = [MLT−2]× [L] = [ML2T−2]

Now determine the dimensions of an energy per unit mass:

Energy per unit Mass=Energy÷Mass= [ML2T−2]÷[M] = [L2T−2]
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Challenge 11.5 Imagine we want to transform a temperature
field from a Cartesian coordinate system, T = f (x,y), to a polar
coordinate system, T = g(r,θ), where x = r cosθ and y = r sinθ.
Use partial differentiation to determine expressions for:

∂T
∂x

and
∂T
∂y

(11.7)

purely in terms of T , r and θ.
Note that r [L] is the radial distance from the origin and θ [-]

is the anti-clockwise angle of direction about the origin from the
x axis

Because T = g(r,θ), the general expression for the total deriva-
tive of T takes the form

dT =
∂T
∂r

dr+
∂T
∂θ

dθ

and therefore:
∂T
∂x

=
∂T
∂r

∂r
∂x

+
∂T
∂θ

∂θ

∂x
(11.8)

∂T
∂y

=
∂T
∂r

∂r
∂y

+
∂T
∂θ

∂θ

∂y
(11.9)

Recall that x = r cosθ and y = r sinθ, therefore:

∂x
∂r

= cosθ,
∂y
∂r

= sinθ,
∂x
∂θ

=−r sinθ,
∂y
∂θ

= r cosθ

which on substitution into Eq. (11.8) and (11.9) lead to:

∂T
∂x

= secθ
∂T
∂r

− cosecθ

r
∂T
∂θ

∂T
∂y

= cosecθ
∂T
∂r

+
secθ

r
∂T
∂θ
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11.5 Problem sheet
Problem 11.1 (see Worked Solution 11.1)

Determine
∂ f
∂x

and
∂ f
∂y

for the following functions:

a) f (x,y) = 3x+4y b) f (x,y) = xy3 + x2y2

c) f (x,y) = x3y+ ex d) f (x,y) = xe2x+3y

e) f (x,y) =
x− y
x+ y

f) f (x,y) = 2xsin(x2y)

Problem 11.2 (see Worked Solution 11.2)

Determine
∂

∂x

(
∂ f
∂y

)
and

∂

∂y

(
∂ f
∂x

)
for the following functions:

a) f (x,y) = x2 + xy− y2 b) f (x,y) = x2 siny+ y2 cosx

c) f (x,y) =
y
x

lnx d) f (x,y) =
1

x2 + y2

Problem 11.3 (see Worked Solution 11.3)

Consider the volcano Mauna Kea. Assuming the volcano to be
comprised of a perfect cone of height, H(t), with a base of ra-
dius, R(t), the volume, V (R,H), can be determined from

V =
π

3
R(t)2H(t)

where t is time.

a) Determine an expression for the total derivative of V with re-
spect to time in terms of R, H and t.
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b) The angle of volcano slope, θ(R,H), is found from

θ = arctan
(

H(t)
R(t)

)
Determine an expression for the total derivative of θ with respect
to time in terms of R, H and t.

Problem 11.4 (see Worked Solution 11.4)

Consider the partial differential equation (PDE)

x
∂ f
∂x

+ y
∂ f
∂y

= 0

Suppose that
f (x,y) = g(s)

where s = y/x. Obtain expressions for the partial derivatives of
f (x,y) with respect to x and y in terms of g, s, x and y, and verify
that f (x,y) = g(s) is indeed a solution to the PDE above.

11.6 Worked solutions
Worked Solution 11.1 (see Problem 11.1)

a) f = 3x+4y

therefore
∂ f
∂x

= 3 and
∂ f
∂y

= 4

b) f = xy3 + x2y2

therefore
∂ f
∂x

= y3 +2xy2 and
∂ f
∂y

= 3xy2 +2x2y
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c) f = x3y+ ex

therefore
∂ f
∂x

= 3x2y+ ex and
∂ f
∂y

= x3

d) f = xe2x+3y

therefore
∂ f
∂x

= e2x+3y +2xe2x+3y = (1+2x)e2x+3y

and
∂ f
∂y

= 3xe2x+3y

e) f =
x− y
x+ y

Taking logs of both sides leads to ln f = ln(x− y)− ln(x+ y)

It then follows that
1
f

∂ f
∂x

=
1

x− y
− 1

x+ y

therefore
∂ f
∂x

=
x− y
x+ y

(
1

x− y
− 1

x+ y

)
=

2y
(x+ y)2

and
1
f

∂ f
∂y

=− 1
x− y

− 1
x+ y

therefore
∂ f
∂y

=−x− y
x+ y

(
1

x− y
+

1
x+ y

)
=− 2x

(x+ y)2

f) f (x,y) = 2xsin(x2y)

∂ f
∂x

= 2sin(x2y)+2x×2xycos(x2y) = 2sin(x2y)+4x2ycos(x2y)

∂ f
∂y

= 2x3 cos(x2y)

Worked Solution 11.2 (see Problem 11.2)
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a) f (x,y) = x2 + xy− y2

∂ f
∂x

= 2x+ y
∂ f
∂y

= x−2y

∂

∂y

(
∂ f
∂x

)
= 1

∂

∂x

(
∂ f
∂y

)
= 1

b) f (x,y) = x2 siny+ y2 cosx

∂ f
∂x

= 2xsiny− y2 sinx
∂ f
∂y

= x2 cosy+2ycosx

∂

∂y

(
∂ f
∂x

)
= 2xcosy−2ysinx

∂

∂x

(
∂ f
∂y

)
= 2xcosy−2ysinx

c) f (x,y) =
y
x

lnx

∂ f
∂x

=
y
x2 −

y
x2 lnx

∂ f
∂y

=
1
x

lnx

∂

∂y

(
∂ f
∂x

)
=

1
x2 (1− lnx)

∂

∂x

(
∂ f
∂y

)
=

1
x2 (1− lnx)

d) f (x,y) =
1

x2 + y2

∂ f
∂x

=− 2x
(x2 + y2)2

∂ f
∂y

=− 2y
(x2 + y2)2

∂

∂y

(
∂ f
∂x

)
=

8xy
(x2 + y2)3

∂

∂x

(
∂ f
∂y

)
=

8xy
(x2 + y2)3
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Worked Solution 11.3 (see Problem 11.3)

a) V =
π

3
R(t)2H(t)

dV
dt

=
∂V
∂R

dR
dt

+
∂V
∂H

dH
dt

∂V
∂R

=
π

3
2R(t)H(t)

∂V
∂H

=
π

3
R(t)2

Therefore
dV
dt

=
π

3
R(t)

(
2H(t)

dR
dt

+R(t)
dH
dt

)

b) θ = arctan
(

H(t)
R(t)

)
dθ

dt
=

∂θ

∂R
dR
dt

+
∂θ

∂H
dH
dt

Let u = H(t)/R(t) such that θ = arctan(u).

Recall that
dθ

du
=

1
1+u2

Note that a “d” is used above, as opposed to a “∂”, because the
fact that θ = arctan(u) suggests that θ is only a function of u, and
therefore its derivative with respect to u has to be a total deriva-
tive.

Application of the chain rule then yields:

∂θ

∂R
=

∂u
∂R

dθ

du
=− H

R2
1

1+u2 =− H
R2

R2

R2 +H2 =− H
R2 +H2

∂θ

∂H
=

∂u
∂H

dθ

du
=

1
R

1
1+u2 =

1
R

R2

R2 +H2 =
R

R2 +H2



PARTIAL DIFFERENTIATION 172

Therefore it can be seen that

dθ

dt
=

1
R2 +H2

(
R

dH
dt

−H
dR
dt

)
Worked Solution 11.4 (see Problem 11.4)

The strategy to be used here is to differentiate g(s) with respect
to x and y and then substitute these derivatives into the original
PDE.

Using the chain rule, it can be said that:

∂g
∂x

=
∂s
∂x

dg
ds

and
∂g
∂y

=
∂s
∂y

dg
ds

Note that g is only a function of s. Therefore the derivative of g
with respect to s is total as opposed to partial. Consequently, a
“d” is used as opposed to “∂” for the derivative of g.

Then given the identity s = y/x:

∂s
∂x

=− y
x2 and

∂s
∂y

=
1
x

and hence it can be said that

∂g
∂x

=− y
x2

dg
ds

and
∂g
∂y

=
1
x

dg
ds

which, when substituted into the original PDE yields

−xy
x2

dg
ds

+
y
x

dg
ds

= 0

which is indeed true and f (x,y) = g(s) is confirmed.
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Diffusion and the error
function

12.1 Learning outcomes
You should be able to:

• Derive the diffusion equation using a mass conservation
statement and a control-volume.

• Apply a similarity transform to a partial differential equa-
tion to reduce it to an ordinary differential equation (ODE).

• Apply a dependent variable transform to a second-order
ODE to reduce it to a first-order ODE.

• Discuss what the error function is and how it relates to
both the normal distribution function and the diffusion equa-
tion.

173
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12.2 Fick’s first and second law
An important partial differential equation, used for a multitude
of different applications, is the diffusion equation. In this exam-
ple, we will consider the diffusion of solutes in water contained
within a water saturated porous medium of porosity φ [-]. How-
ever, the same equation can be used to describe heat conduction
in solids and fluid flow in porous media. Note that the porosity
of a rock is found from the volume of voids in the rock divided
by the total volume of the rock.

Let c [ML−3] be the concentration of a solute in a given so-
lution. More specifically, c represents the mass of solute per unit
volume of solvent. Solute tends to migrate from areas of high
concentration to areas of low concentration. The German physi-
ologist, Adolf Fick, active in the late 19th century and early 20th
century, was interested in gas diffusion across membranes. Ac-
cording to Fick’s first law, solute flux is linearly proportional to
the concentration gradient. The coefficient of proportionality is
often referred to as the effective diffusion coefficient, which we
will denote as DE [L2T−1].

A solute flux represents the rate of mass movement per unit
area of a surface. Fick’s first law in Cartesian coordinates takes
the form:

Jx =−DE
∂c
∂x

, Jy =−DE
∂c
∂y

, Jz =−DE
∂c
∂z

(12.1)

where Jx [ML−2T−1], Jy [ML−2T−1] and Jz [ML−2T−1] are so-
lute fluxes in the x, y and z direction, respectively.

The diffusion equation is often referred to as Fick’s second
law. To obtain the diffusion equation we need to invoke the con-
cept of mass conservation in a control-volume.
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12.3 Mass conservation in a control-volume
A control-volume represents an infinitesimal fixed volume of
length, breadth and height, δx, δy and δz, respectively.

The fundamental concept of mass conservation is simply that
the mass of a substance into a control-volume minus the mass of
that substance out of a control-volume equals the change of mass
of that substance within the control-volume.

Challenge 12.1 Given Fick’s first law, use mass conservation
across the control-volume, shown in Fig. 12.1, to derive Fick’s
second law of diffusion for a rock with porosity, φ [-].

δxδyδt(Jz + δJz)

δyδzδt(Jx + δJx)

δxδzδt(Jy + δJy)

δyδzδtJx

δxδzδtJy

δxδyδtJz

δx

δz

δy

Figure 12.1: Chemical diffusion through a control-volume.

The mass of solute into our control-volume during a finite
period of time, δt, can be written as

δyδzδtJx +δxδzδtJy +δxδyδtJz

The mass of solute out of our control-volume during the
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same period of time can be written as

δyδzδt(Jx +δJx)+δxδzδt(Jy +δJy)+δxδyδt(Jz +δJz)

The total mass of solute within the control-volume is found
from

δxδyδzφc

The only variable in the above expression that will change as
a consequence of solute movement is c. Therefore, the change in
mass of solute within the control-volume that takes place during
the time period, δt, is found from

δxδyδzφδc

Invoking the idea that

Mass In−Mass Out = Change in Mass

(i.e., mass conservation) then leads to

δyδzδtJx +δxδzδtJy +δxδyδtJz
−δyδzδt(Jx +δJx)−δxδzδt(Jy +δJy)−δxδyδt(Jz +δJz)
= δxδyδzφδc

After some rearranging and simplification, this leads to

φ
δc
δt

+
δJx

δx
+

δJy

δy
+

δJz

δz
= 0

Now if we consider the limit as δx → 0, δy → 0, δz → 0 and
δt → 0, it can be said that

φ
∂c
∂t

+
∂Jx

∂x
+

∂Jy

∂y
+

∂Jz

∂z
= 0
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and substituting Fick’s first law (i.e., Eq. (12.1)) then leads to

φ
∂c
∂t

− ∂

∂x

(
DE

∂c
∂x

)
− ∂

∂y

(
DE

∂c
∂y

)
− ∂

∂z

(
DE

∂c
∂z

)
= 0

which is Fick’s second law of diffusion, otherwise known as the
diffusion equation.

Also note that if DE is constant,

φ
∂c
∂t

−DE

(
∂2c
∂x2 +

∂2c
∂y2 +

∂2c
∂z2

)
= 0

12.4 Solution by similarity transform
Many one-dimensional partial differential equations (PDE) are
self-similar, which means that they admit to a similarity trans-
form such that they can be reduced to an ordinary differential
equation (ODE) with respect to the chosen similarity transform.
Once transformed to an ODE, the PDE can be solved using meth-
ods already developed for solving ODEs.

A PDE is self-similar if it is possible to change the indepen-
dent variables in the denominator of all the partial derivatives to
the generalized similarity transform, z = xatb, and choose values
of a and b such that x and t are eliminated from the PDE as well
as the associated initial and boundary conditions.
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Challenge 12.2 Consider the governing equation for one-
dimensional diffusion of solute in a semi-infinite homogenous
porous medium

φ
∂c
∂t

−DE
∂2c
∂x2 = 0 (12.2)

subjected to the following initial and boundary conditions:

c = ci, x ≥ 0, t = 0
c = c0, x = 0, t > 0
c = ci, x → ∞, t > 0

(12.3)

where ci and c0 are the initial and boundary concentrations, re-
spectively.

Substitute in the generalized similarity transform

z = xatb (12.4)

and determine values for a and b such that x and t are eliminated
and the problem is demonstrated to be self-similar.

Application of the chain rule to Eq. (12.2) leads to

φ
∂z
∂t

∂c
∂z

−DE
∂

∂x

(
∂z
∂x

∂c
∂z

)
= 0 (12.5)

then application of the product rule to the second term in Eq.
(12.5) yields

φ
∂z
∂t

∂c
∂z

−DE

[
∂2z
∂x2

∂c
∂z

+
∂z
∂x

∂

∂x

(
∂c
∂z

)]
= 0

and finally application of the chain rule again to the last term
leads to

φ
∂z
∂t

∂c
∂z

−DE

[
∂2z
∂x2

∂c
∂z

+

(
∂z
∂x

)2
∂2c
∂z2

]
= 0 (12.6)
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From Eq. (12.4), it can be seen that:

∂z
∂t

= bxatb−1 =
bz
t

∂z
∂x

= axa−1tb =
az
x

∂2z
∂x2 = a(a−1)xa−2tb =

a(a−1)z
x2

such that it can be said that (from Eq. (12.6))

φ
bz
t

∂c
∂z

−DE

(
a(a−1)

z
x2

∂c
∂z

+
a2z2

x2
∂2c
∂z2

)
= 0 (12.7)

The problem is thought to be self similar if it is possible to
choose values of a and b such that all the x and t terms are elim-
inated.

Multiplying both sides of Eq. (12.7) by x2 it can be seen that

φ
bzx2

t
∂c
∂z

−DE

(
a(a−1)z

∂c
∂z

+a2z2 ∂2c
∂z2

)
= 0

Recalling that z = xatb, it is now apparent that all the x and t
terms are eliminated when a = 2 and b =−1 such that z = x2t−1.
Setting a = 2 and b =−1 leads to

−φz2 ∂c
∂z

−DE

(
2z

∂c
∂z

+4z2 ∂2c
∂z2

)
= 0

and after some further rearrangement and simplification we have(
φ+

2DE

z

)
∂c
∂z

+4DE
∂2c
∂z2 = 0 (12.8)

which is an ODE.
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Also note that the initial and boundary conditions, given ear-
lier in Eq. (12.3), reduce to

c = ci, z → ∞

c = c0, z = 0 (12.9)

12.5 Application of a dependent variable
transform

The ODE in Eq. (12.8) remains difficult to solve using meth-
ods we have learnt previously. At this stage it is often useful to
consider a dependent variable transform, to transform a second-
order ODE into a first-order ODE.

Challenge 12.3 Substitute the dependent variable transform

u =
∂c
∂z

(12.10)

into Eq. (12.8) and solve for u.

Substituting Eq. (12.10) into Eq. (12.8) leads to(
φ+

2DE

z

)
u+4DE

∂u
∂z

= 0 (12.11)

Separating variables we then have∫ (
φ+

2DE

z

)
dz =−4DE

∫ 1
u

du

which leads to

φz+2DE lnz =−4DE lnu+E

where E is an integration constant yet to be defined.
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After some further rearrangement, it can be shown that

u = z−1/2 exp
(

E−φz
4DE

)
= exp

(
E

4DE

)
z−1/2 exp

(
− φz

4DE

)
(12.12)

Challenge 12.4 Use Eq. (12.12) to obtain a solution for c in
terms of an integral function of z.

Equating Eqs. (12.10) and (12.12) it can be understood that

∂c
∂z

= exp
(

E
4DE

)
z−1/2 exp

(
− φz

4DE

)
and integrating both sides with respect to z leads to:

c = exp
(

E
4DE

)∫
z−1/2 exp

(
− φz

4DE

)
dz (12.13)

Challenge 12.5 The complementary error function, erfc(ζ), is
defined by

erfc(ζ) =
2√
π

∫
∞

ζ

e−ζ2
dζ (12.14)

and has the following properties: erfc(0) = 1 and erfc(∞) = 0.
Substitute the complementary error function into Eq. (12.13)

and determine expressions for the two resulting integration con-
stants such that the initial and boundary conditions, given by Eq.
(12.9), are satisfied.

Comparing Eqs. (12.13) and (12.14) suggests that we should
try to make the substitution

ζ
2 =

φz
4DE

from which it follows that

z =
4DEζ2

φ
and

∂z
∂ζ

=
8DEζ

φ
= 4

(
DEz

φ

)1/2
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It can therefore be understood that

c = 4
(

DE

φ

)1/2

exp
(

E
4DE

)∫
e−ζ2

dζ

It is now possible to substitute the complementary error func-
tion to get

c = 2
(

πDE

φ

)1/2

exp
(

E
4DE

)
erfc(ζ)+F (12.15)

where F is another integration constant.
Recalling that z = x2t−1 it follows that

ζ
2 =

φx2

4DEt

and the initial and boundary conditions, given by Eq. (12.9),
reduce to

c = ci, ζ → ∞

c = c0, ζ = 0 (12.16)

Noting that erfc(∞) = 0 it follows that

F = ci (12.17)

Furthermore, noting that erfc(0) = 1 it follows that

2
(

πDE

φ

)1/2

exp
(

E
4DE

)
= c0 − ci (12.18)

Substituting Eqs. (12.17) and (12.18) into Eq. (12.15) leads to

c− ci

c0 − ci
= erfc(ζ)
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12.6 The normal distribution function
Data is often described as being normally distributed. What is
meant by this is that the histogram of the data looks like the nor-
mal distribution. The normal distribution is a continuous proba-
bility density function (PDF), which takes the form

f (x) =
1

σ
√

2π
exp
[
−(x−µ)2

2σ2

]
where f is the probability density of a variable, x, which is nor-
mally distributed and has a mean and standard deviation of µ and
σ, respectively.

Recall that for a discrete set of data, xn, the mean and stan-
dard deviation can be calculated from:

µ =
1
N

N

∑
n=1

xn, σ =

√
1

N −1

N

∑
n=1

(xn −µ)2

where N is the number of available data points.
The meaning of probability density is better understood if

ones considers the associated cumulative distribution function,
F(x), found from

F(x) =
∫ x

−∞

f (x)dx

If X is a random variable that is sampled from the PDF, f (x),
then F(x) is the probability of X not exceeding x, often denoted
as P(X ≤ x).
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Challenge 12.6 The cumulative distribution function (CDF),
F(x), is found from

F(x) =
∫ x

−∞

f (x)dx (12.19)

where f (x) is the associated probability density function (PDF).
Determine the CDF for the normal distribution PDF:

f (x) =
1

σ
√

2π
exp
[
−(x−µ)2

2σ2

]
(12.20)

and write your answer in terms of the complementary error func-
tion:

erfc(ζ) =
2√
π

∫
∞

ζ

e−ζ2
dζ (12.21)

Substituting Eq. (12.20) into Eq. (12.19) leads to

F(x) =
1

σ
√

2π

∫ x

−∞

exp
[
−(x−µ)2

2σ2

]
dx (12.22)

Comparing Eqs. (12.22) and (12.21) suggests we should try
to make the substitution

ζ =
x−µ
σ
√

2
(12.23)

from which we get
dζ

dx
=

1
σ
√

2
(12.24)

and

F(x) =
1√
π

∫
ζ

−∞

e−ζ2
dζ (12.25)

It can be seen that this is not an appropriate substitution be-
cause the limits in the integral to do not match with those in Eq.
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(12.21). An alternative possibility is to try substituting

ζ =
µ− x
σ
√

2
(12.26)

from which we get
dζ

dx
=− 1

σ
√

2
(12.27)

and
F(x) =

1√
π

∫
∞

ζ

e−ζ2
dζ (12.28)

It therefore follows that

F(x) =
1
2

erfc
(

µ− x
σ
√

2

)
(12.29)

Relation to the error function
The complementary error function is related to another function
of interest, the error function, erf(ζ), by the formula erfc(ζ) =
1− erf(ζ). The error function gets its name from its use in error
analysis where error is assumed to be a random but normally dis-
tributed process. These ideas were originally developed by the
German mathematician, Carl Friedrich Gauss, during the early
19th century.

It is true that many data appear to be normally distributed.
Interestingly, erfc(ζ) is a solution to the diffusion equation.

12.7 Problem sheet
Problem 12.1 (see Worked Solution 12.1)

Consider the one-dimensional heat conduction equation

ρcp
∂T
∂t

= k
∂2T
∂x2
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where ρ [ML3] is density, cp [L2T−2Θ−1] is constant-pressure
specific heat capacity, T [Θ] is temperature, t [T] is time, k
[MLT−3Θ−1] is thermal conductivity and x [L] is distance.

Determine expressions for a and b for when

T =C exp(−ax)sin(bx−ωt)

is a solution, where C and ω are undefined constants associated
with the initial and boundary conditions.

Problem 12.2 (see Worked Solution 12.2)

Consider the one-dimensional groundwater flow equation

φ(cr + cw)
∂p
∂t

=
k
µ

∂2 p
∂x2

where φ [-] is porosity, cr [M−1LT2] is rock compressibility cw
[M−1LT2] is water compressibility, p [ML−1T−2] is pore-pressure,
t is time, k [L2] is permeability, µ [ML−1T−1] is the dynamic
viscosity of water and x [L] is distance.

Show that

p(x, t) =
√

µ
φ(cr + cw)t

exp
(
−φ(cr + cw)µx2

4kt

)
is a solution.

Problem 12.3 (see Worked Solution 12.3)

Consider the one-dimensional chemical diffusion equation

∂c
∂t

= DA
∂2c
∂x2

where c [ML−3] is solute concentration, DA [L2T−1] is the ap-
parent diffusion coefficient, t is time and x [L] is distance.
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a) Make the change of variables

c(x, t) = t−1/2 f (s), s =
x√

4DAt

to derive a new equation.

b) Show that the total amount of c, found from

M =
∫

∞

−∞

c(x, t)dx

is constant.

c) Show that
f (s) = exp(−s2)

is a solution.

12.8 Worked solutions
Worked Solution 12.1 (see Problem 12.1)
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The first step is to partially differentiate the proposed solution:

T = Ce−ax sin(bx−ωt)

∂T
∂t

= −ωCe−ax cos(bx−ωt)

∂T
∂x

= Ce−ax [bcos(bx−ωt)−asin(bx−ωt)]

∂2T
∂x2 = Ce−ax [−b2 sin(bx−ωt)−abcos(bx−ωt)

]
−aCe−ax [bcos(bx−ωt)−asin(bx−ωt)]

= Ce−ax [(a2 −b2)sin(bx−ωt)−2abcos(bx−ωt)
]

Substituting these back into the original PDE then leads to

−ρcpωCe−ax cos(bx−ωt)

= kCe−ax [(a2 −b2)sin(bx−ωt)−2abcos(bx−ωt)
]

which reduces further to

k(a2 −b2) tan(bx−ωt)−2abk+ρcpω = 0

The above equation cannot be a solution to the original PDE
with the tan(bx−ωt) term. Therefore, it is necessary for b =±a
to eliminate the tan term.

If we consider b = a, then

−2a2k+ρcpω = 0

from which it can now be understood that

a =±
(

ρcpω

2k

)1/2
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Alternatively, if we consider b =−a, then

2a2k+ρcpω = 0

from which it can now be understood that

a =±i
(

ρcpω

2k

)1/2

Worked Solution 12.2 (see Problem 12.2)

Again, it is necessary to partially differentiate the proposed so-
lution. However, before doing this, it is convenient to make the
following substitutions:

A =

√
µ

φ(cr + cw)
, B =−φ(cr + cw)µ

4k

such that

p = At−1/2 exp
(
Bx2t−1)

∂p
∂t

= −At−1/2 exp
(
Bx2t−1)( 1

2t
+

Bx2

t2

)
∂p
∂x

= At−1/2 exp
(
Bx2t−1)(2Bx

t

)
∂2 p
∂x2 = At−1/2 exp

(
Bx2t−1)(2B

t
+

4B2x2

t2

)
which on substituting back into the original PDE leads to

−φ(cr + cw)At−1/2 exp
(
Bx2t−1)( 1

2t
+

Bx2

t2

)

=
k
µ

At−1/2 exp
(
Bx2t−1)(2B

t
+

4B2x2

t2

)
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After some further rearranging, this reduces to

−φ(cr + cw) = 4B
k
µ

and

B =−φ(cr + cw)µ
4k

Hence the proposed function is a solution to the specified PDE.

Worked Solution 12.3 (see Problem 12.3)

a) To make the change in variables to derive a new equation it
is necessary first to apply the dependent variable transform, c =
t−1/2 f (s).

Note that

∂c
∂t

=
∂

∂t
(t−1/2 f ) =

1
t1/2

(
∂ f
∂t

− f
2t

)
and

∂2c
∂x2 =

1
t1/2

∂2 f
∂x2

which when substituted back into the original PDE leads to

∂ f
∂t

− f
2t

= DA
∂2 f
∂x2 (12.30)

To eliminate the original independent variables and apply the
proposed similarity transform, s = x(4DAt)−1/2, it is necessary
to apply the chain-rule as follows:

Note that

∂s
∂t

=− s
2t
,

∂s
∂x

=
s
x
,

∂2s
∂x2 = 0
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and therefore:

∂ f
∂t

=
∂s
∂t

∂ f
∂s

=− s
2t

∂ f
∂s

∂2 f
∂x2 =

∂

∂x

(
∂ f
∂x

)
=

∂

∂x

(
∂s
∂x

∂ f
∂s

)
=

∂2s
∂x2

∂ f
∂s

+
∂s
∂x

∂

∂x

(
∂ f
∂s

)

=
∂2s
∂x2

∂ f
∂s

+

(
∂s
∂x

)2
∂2 f
∂s2 =

s2

x2
∂2 f
∂s2

which on substitution back into Eq. (12.30) leads to

− s
2t

∂ f
∂s

− f
2t

= DA
s2

x2
∂2 f
∂s2

which reduces to

0 =
∂2 f
∂s2 +2s

∂ f
∂s

+2 f (12.31)

b) Determine the integral

M =
∫

∞

−∞

c(x, t)dx

is a constant.
First apply the dependent variable transform

M =
∫

∞

−∞

t−1/2 f (s)dx

Now apply the similarity transform using the chain rule

M =
∫

∞

−∞

t−1/2 f (s)
∂x
∂s

ds



DIFFUSION AND THE ERROR FUNCTION 192

Recall that
∂s
∂x

=
s
x

therefore

M =
∫

∞

−∞

t−1/2 f (s)
x
s

ds =
∫

∞

−∞

t−1/2 f (s)
x
√

4DAt
x

ds

=
√

4DA

∫
∞

−∞

f (s)ds

Hence M is indeed a constant with time.

c) Consider
f (s) = exp(−s2) (12.32)

from which it can be seen that:

∂ f
∂s

=−2sexp(−s2)

∂2 f
∂s2 = (4s2 −2)exp(−s2)

which when substituted into Eq. (12.31) yield

0 = (4s2 −2)exp(−s2)−4s2 exp(−s2)+2exp(−s2)

Hence Eq. (12.32) is a solution to Eq. (12.31).
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Fourier’s law, series and
transform

13.1 Learning outcomes
You should be able to:

• Discuss the link between Fourier’s law of heat conduction,
the Fourier series and the Fourier transform.

• Transform a partial differential equation (PDE) to a set of
ordinary differential equations (ODE) using separation of
variables.

• Constrain the boundary condition of a PDE to an arbi-
trary spatial distribution of a state variable using an in-
tegral transform.

• Simplify trigonometric functions evaluated at integer val-
ues.

• Integrate products of piecewise periodic functions with trigono-
metric functions and other polynomials.

193
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13.2 Fourier’s law of heat conduction
Joseph Fourier was a 18th/19th century French mathematician.
There are many mathematical subjects associated with Fourier.
Three of note are Fourier’s law, the Fourier series and the Fourier
transform.

Fourier’s law is the idea that heat conduction can be modeled
using a diffusion equation of the form

ρcp
∂T
∂t

− ∂

∂x

(
k

∂T
∂x

)
− ∂

∂y

(
k

∂T
∂y

)
− ∂

∂z

(
k

∂T
∂z

)
= 0

where ρ [ML−3] is density, cp [L2T−2Θ−1] is constant-pressure
specific heat capacity, T [Θ] is temperature, t [T] is time and k
[MLT−3Θ−1] is thermal conductivity.

Now consider two dimensional steady state heat conduction
in a homogenous medium:

∂2T
∂x2 +

∂2T
∂y2 = 0 (13.1)

where the following boundary conditions apply:

T = 0, x = 0, 0 ≤ y ≤ b
T = 0, x = a, 0 ≤ y ≤ b
T = 0, 0 ≤ x ≤ a, y = 0
T = f (x), 0 ≤ x ≤ a, y = b

and a [L] and b [L] are the breadth and length of the domain,
respectively and f (x) [Θ] is an arbitrary function of x.

In what follows, we will transform the PDE in Eq. (13.1) into
two ODEs using separation of variables. The three zero tempera-
ture boundaries are easily enforced by determining values for the
integration constants. The f (x) boundary is then imposed using
an innovative integration method developed by Fourier, which
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gave rise to the development of the Fourier series and Fourier
transform.

Although the original motivation of the Fourier series was
to solve PDEs, the series has become invaluable in the field of
signal processing and inverse modeling.

Challenge 13.1 Consider the partial differential equation for
two-dimensional steady-state heat conduction

∂2T
∂x2 +

∂2T
∂y2 = 0

Substitute T (x,y) = F(x)G(y) and separate the variables to
derive two associated ordinary differential equations.

Making the specified substitution leads to

∂2(FG)

∂x2 +
∂2(FG)

∂y2 = 0

Because G is constant in x it can come outside of the partial
derivative with respect to x. Similarly, because F is constant in y
it can come outside of the partial derivative with respect to y. It
follows that

G
∂2F
∂x2 +F

∂2G
∂y2 = 0

To separate the variables, we need to get all the x factors on
one side and the y factors on the other side:

1
G

∂2G
∂y2 =− 1

F
∂2F
∂x2

Note that the left-hand-side of the above equation is purely
a function of x whereas the right-hand-side is purely a function
of y. It follows that both sides are therefore actually constant in
both x and y such that it can be said that
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1
G

∂2G
∂y2 =− 1

F
∂2F
∂x2 = α

where α is a constant yet to be defined.
In this way, two ODEs are derived:

∂2F
∂x2 +αF = 0 (13.2)

∂2G
∂y2 −αG = 0 (13.3)

Challenge 13.2 Derive general solutions for F and G.

Eq. (13.2) represents a linear and homogenous second-order dif-
ferential equation. The associated auxiliary equation takes the
form

λ
2 +α = 0

which has imaginary roots λ =±i
√

α. It follows that the general
solution for Eq. (13.2) is

F = Acos(
√

αx)+Bsin(
√

αx)

where A and B are integration constants yet to be defined.
Eq. (13.3) also represents a linear and homogenous second-

order differential equation. The associated auxiliary equation
takes the form

λ
2 −α = 0

which has the roots λ = ±√
α. It follows that the general solu-

tion for Eq. (13.2) is

G =C cosh(
√

αy)+Dsinh(
√

αy)
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where C and D are another set of integration constants yet to be
defined.

Challenge 13.3 Given the general solutions for F and G apply
the following boundary conditions:

T = 0, x = 0, 0 ≤ y ≤ b
T = 0, x = a, 0 ≤ y ≤ b
T = 0, 0 ≤ x ≤ a, y = 0

Recall that T (x,y) = F(x)G(y) where

F = Acos(
√

αx)+Bsin(
√

αx)

G =C cosh(
√

αy)+Dsinh(
√

αy)

First consider the boundary at x = 0. We need to choose a
value of A or B such that F = 0 when x = 0. Noting that sin0 = 0
it follows that we should choose A to be zero. Therefore

F = Bsin(
√

αx)

Now we will consider the boundary at y = 0. We need to
choose a value for C or D such that G = 0 when y = 0. Noting
that sinh0 = 0 it follows that we should choose C to be zero.
Therefore

G = Dsinh(
√

αy)

Given that T (x,y) = F(x)G(y) we can now say that

T (x,y) = E sin(
√

αx)sinh(
√

αy)

where E = BD.
Now we will consider the boundary at x = a. We need to

choose a value for E or α such that T = 0 when x = a. It is
clear that there is no non-zero value of E that can satisfy this
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condition. Therefore we need to choose a value of α such that
sin(

√
αa) = 0. Noting that sin(nπ) = 0 where n is an integer, we

should choose √
α =

nπ

a
such that we have

T (x,y) = E sin
(nπx

a

)
sinh

(nπy
a

)
(13.4)

13.3 Non-uniform boundary conditions
Unfortunately the boundary condition T (x,y = b) = f (x) is less
straightforward to apply. The problem is that it is not possible to
choose a constant value of E such that T = f (x) for 0 ≤ x ≤ a.
However, Fourier recognized that n = 1,2,3, . . . ,∞. Therefore,
Eq. (13.4) represents a set of solutions:

Tn(x,y) = En sin
(nπx

a

)
sinh

(nπy
a

)
where En represents a set of integration constants yet to be de-
fined.

It is therefore possible to write a solution as a summation of
these alternative solutions, i.e.,

T (x,y) =
∞

∑
n=1

En sin
(nπx

a

)
sinh

(nπy
a

)
Challenge 13.4 Consider the solution

T (x,y) =
∞

∑
n=1

En sin
(nπx

a

)
sinh

(nπy
a

)
(13.5)

Apply the boundary condition T (x,b) = f (x) and derive an
expression for f (x) in terms of En.
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The boundary condition implies that T = f (x) when y = b. It
follows that

f (x) =
∞

∑
n=1

En sin
(nπx

a

)
sinh

(
nπb

a

)
(13.6)

Challenge 13.5 Multiply both sides of Eq. (13.6) by
sin(mπx/a) (where m is another set of positive integers) and in-
tegrate both sides with respect to x from 0 to a.

∫ a

0
f (x)sin

(mπx
a

)
dx

=
∞

∑
n=1

En sinh
(

nπb
a

)∫ a

0
sin
(nπx

a

)
sin
(mπx

a

)
dx

(13.7)

To deal with the integral on the right-hand-side, first invoke
the relationship

cos(A+B) = cosAcosB− sinAsinB

from which it can be said that

cos(A−B) = cosAcosB+ sinAsinB

and consequently

sinAsinB =
cos(A−B)− cos(A+B)

2
It follows that
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∫ a

0
sin
(nπx

a

)
sin
(mπx

a

)
dx

=
∫ a

0

1
2

[
cos
(
(n−m)πx

a

)
− cos

(
(n+m)πx

a

)]
dx

=
a

2π

sin
(
(n−m)πx

a

)
n−m

−
sin
(
(n+m)πx

a

)
n+m

a

0

=
a

2π

[
sin((n−m)π)

n−m
− sin((n+m)π)

n+m

]
(13.8)

Substituting Eq. (13.8) into Eq. (13.7) then yields

∫ a

0
f (x)sin

(mπx
a

)
dx

=
∞

∑
n=1

En sinh
(

nπb
a

)
a

2π

[
sin((n−m)π)

n−m
− sin((n+m)π)

n+m

]
But note that because n and m are all positive integers, all the

terms on the right-hand-side are zero except for the ones where
n = m. Recall that

lim
ε→0

sin(εx)
ε

= x

It follows that

∫ a

0
f (x)sin

(mπx
a

)
dx = Em sinh

(
mπb

a

)
a
2

(13.9)
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Challenge 13.6 Use Eq. (13.9) to determine En and write a so-
lution for T (x,y) that satisfies the boundary condition, T (x,b) =
f (x).

Solving Eq. (13.9) for Em leads to

Em =
2

asinh(mπb/a)

∫ a

0
f (x)sin(mπx/a)dx

If we set m = n we will therefore have

En =
2

asinh(nπb/a)

∫ a

0
f (x)sin(nπx/a)dx (13.10)

which on substitution back into Eq. (13.5) leads to

T (x,y) =
∞

∑
n=1

2sin(nπx/a)sinh(nπy/a)
asinh(nπb/a)

∫ a

0
f (x)sin(nπx/a)dx

(13.11)

Challenge 13.7 Use Eq. (13.11) to write a solution for T (x,y)
when

f (x) =


T0

(x
c

)
, 0 ≤ x ≤ c

T0

(
a− x
a− c

)
, c < x ≤ a

(13.12)

Let
Fn =

∫ a

0
f (x)sin(nπx/a)dx (13.13)

such that

T (x,y) =
∞

∑
n=1

2Fn sin(nπx/a)sinh(nπy/a)
asinh(nπb/a)
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Substituting Eq. (13.12) into Eq. (13.13) leads to

Fn =
∫ c

0
T0

(x
c

)
sin(nπx/a)dx+

∫ a

c
T0

(
a− x
a− c

)
sin(nπx/a)dx

(13.14)
It can be shown that:∫ x2

x1

sin(nπx/a)dx =
[
−cos(nπx/a)

nπ/a

]x2

x1

and ∫ x2

x1

xsin(nπx/a)dx =
[

sin(nπx/a)
(nπ/a)2 − xcos(nπx/a)

nπ/a

]x2

x1

and therefore∫ x2

x1

(a−x)sin(nπx/a)dx=
[
(x−a)cos(nπx/a)

nπ/a
− sin(nπx/a)

(nπ/a)2

]x2

x1

It follows that∫ c

0

(x
c

)
sin(nπx/a)dx =

1
c

[
sin(nπx/a)
(nπ/a)2 − xcos(nπx/a)

nπ/a

]c

0

=
sin(nπc/a)
c(nπ/a)2 − cos(nπc/a)

nπ/a

and∫ a

c

(
a− x
a− c

)
sin(nπx/a)dx =

[
(x−a)cos(nπx/a)

(a− c)nπ/a
− sin(nπx/a)

(a− c)(nπ/a)2

]a

c

=
sin(nπc/a)

(a− c)(nπ/a)2 +
cos(nπc/a)

nπ/a
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Substituting the above two expressions into Eq. (13.14) then
leads to

Fn = T0

[
sin(nπc/a)
c(nπ/a)2 − cos(nπc/a)

nπ/a
+

sin(nπc/a)
(a− c)(nπ/a)2 +

cos(nπc/a)
nπ/a

]

=
T0a3 sin(nπc/a)
c(a− c)(nπ)2

13.4 The Fourier sine series and sine trans-
form

But consider again Eqs. (13.6) and (13.10):

f (x) =
∞

∑
n=1

En sin
(nπx

a

)
sinh

(
nπb

a

)
En =

2
asinh(nπb/a)

∫ a

0
f (x)sin(nπx/a)dx

Letting bn =En sinh(nπb/a) suggests that a continuous func-
tion, f (x), can be approximated by a summation of sine waves
multiplied by a set of weighting coefficients, bn, i.e.,

f (x) =
∞

∑
n=1

bn sin
(nπx

a

)
(13.15)

where the weighting coefficients are determined from

bn =
2
a

∫ a

0
f (x)sin(nπx/a)dx (13.16)

The expansion in Eq. (13.15) is known as the Fourier sine
series and Eq. (13.16) is known as the Fourier sine transform.
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13.5 Problem sheet
Problem 13.1 (see Worked Solution 13.1)

Simplify the following expressions as much as possible assum-
ing that n is an integer. Take care to consider if more simplifica-
tions are possible if n is odd or even.

a) sin(nπ) b) cos(nπ) c) cos2(nπ)

d) 1+ cos(nπ) e) 1− cos(nπ)

Problem 13.2 (see Worked Solution 13.2)

Integrate the following functions with respect to x.

a) sin(nx) b) cos(nx) c) xsin(nx)

d) xcos(nx) e) x2 sin(nx) f) x2 cos(nx)

Problem 13.3 (see Worked Solution 13.3)

Sketch the following piecewise period functions for x between
−2π and 4π assuming that each function has a period of 2π.

a) f (x) = x−π, 0 ≤ x ≤ 2π

b) f (x) = x(2π− x), 0 ≤ x ≤ 2π

c) f (x) =
{

x, 0 ≤ x < π

2π− x, π ≤ x ≤ 2π

d) f (x) =
{

−1, 0 ≤ x < π

1, π ≤ x ≤ 2π

Problem 13.4 (see Worked Solution 13.4)
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Consider the following notation

⟨·⟩= 1
π

∫ 2π

0
·dx

such that, for example,

⟨ f (x)cosx⟩= 1
π

∫ 2π

0
f (x)cosxdx

For each of the functions in Problem 13.3, determine the follow-
ing definite integrals, where n (if present) is always an integer
value greater than zero.

i) ⟨ f (x)⟩ ii) ⟨ f (x)x⟩

iii) ⟨ f (x)sin(nx)⟩ iv) ⟨ f (x)cos(nx)⟩

Problem 13.5 (see Worked Solution 13.5)

Consider again the ⟨·⟩ notation defined in Problem 13.4. Assum-
ing that m and n are integers, determine the following definite
integrals with special consideration of the cases m = n, m ̸= n,
m = 0 and n = 0.

a) ⟨sin(nx)sin(mx)⟩ b) ⟨sin(nx)cos(mx)⟩

c) ⟨cos(nx)cos(mx)⟩

13.6 Worked solutions
Worked Solution 13.1 (see Problem 13.1)

a) sin(nπ) = 0
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b) For even values of n, cos(nπ) = 1, but for odd values of n,
cos(nπ) =−1.

This can be compactly stated by saying cos(nπ) = (−1)n

c) From the above discussion it is then clear that cos2(nπ) = 1

d) From part b) above 1+ cos(nπ) = 1+(−1)n

e) From part b) above 1− cos(nπ) = 1− (−1)n = 1+(−1)n+1

Worked Solution 13.2 (see Problem 13.2)

a)
∫

sin(nx)dx =−cos(nx)
n

+C

b)
∫

cos(nx)dx =
sin(nx)

n
+C

c)
∫

xsin(nx)dx =−xcos(nx)
n

+
∫ cos(nx)

n
dx

=−xcos(nx)
n

+
sin(nx)

n2 +C

d)
∫

xcos(nx)dx =
xsin(nx)

n
−

∫ sin(nx)
n

dx

=
xsin(nx)

n
+

cos(nx)
n2 +C



FOURIER’S LAW, SERIES AND TRANSFORM 207

e)
∫

x2 sin(nx)dx =−x2 cos(nx)
n

+
2
n

∫
xcos(nx)dx

=−x2 cos(nx)
n

+
2xsin(nx)

n2 +
2cos(nx)

n3 +C

f)
∫

x2 cos(nx)dx =
x2 sin(nx)

n
− 2

n

∫
xsin(nx)dx

=
x2 sin(nx)

n
+

2xcos(nx)
n2 − 2sin(nx)

n3 +C

Worked Solution 13.3 (see Problem 13.3)

a) Sketch of f (x) = x−π, 0 ≤ x ≤ 2π

x
−π

0

π

f
(x
)

−2π 0 2π 4π

b) Sketch of f (x) = x(2π− x), 0 ≤ x ≤ 2π

x
0

π
2

f
(x
)

−2π 0 2π 4π

c) Sketch of f (x) =
{

x, 0 ≤ x < π

2π− x, π ≤ x ≤ 2π



FOURIER’S LAW, SERIES AND TRANSFORM 208

x
0

π
f
(x
)

−2π 0 2π 4π

d) Sketch of f (x) =
{

−1, 0 ≤ x < π

1, π ≤ x ≤ 2π

x
−1

0

1

f
(x
)

−2π 0 2π 4π

Worked Solution 13.4 (see Problem 13.4)
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a) f (x) = x−π

(i)
1
π

∫ 2π

0
(x−π)dx

=

[
x2

2π
− x
]2π

0
= 2π−2π = 0

(ii)
1
π

∫ 2π

0
(x−π)xdx

=

[
x3

3π
− x2

2

]2π

0
=

8π2

3
− 4π2

2
=

2π2

3

(iii)
1
π

∫ 2π

0
(x−π)sin(nx)dx

=
1
π

[
−xcos(nx)

n
+

sin(nx)
n2 +

πcos(nx)
n

]2π

0

=−cos(2nπ)

n
+

cos(2nπ)

n
− 1

n
=−2

n

(iv)
1
π

∫ 2π

0
(x−π)cos(nx)dx

=
1
π

[
xsin(nx)

n
+

cos(nx)
n2 − πsin(nx)

n

]2π

0

=
cos(2nπ)

n2π
− 1

n2π
= 0
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b) f (x) = x(2π− x)

(i)
1
π

∫ 2π

0
x(2π− x)dx =

[
x2 − x3

3π

]2π

0
= 4π

2 − 8
3

π
2 =

4π2

3

(ii)
1
π

∫ 2π

0
x(2π− x)xdx =

[
2x3

3π
− x4

4π

]2π

0
=

16π3

3
− 16π3

4
=

4π3

3

(iii)
1
π

∫ 2π

0
x(2π− x)sin(nx)dx =

1
π

[
2π

(
sin(nx)

n2 − xcos(nx)
n

)
+

(
x2 cos(nx)

n
− 2xsin(nx)

n2 − 2cos(nx)
n3

)]2π

0

=

[(
2− 2x

π

)
sin(nx)

n2 −
(

2x− x2

π
+

2
n2π

)
cos(nx)

n

]2π

0

=−
(

4π− 4π2

π
+

2
n2 π

)
1
n
+

(
2
n2 π

)
1
n
= 0

(iv)
1
π

∫ 2π

0
x(2π− x)cos(nx)dx =

1
π

[
2π

(
xsin(nx)

n
+

cos(nx)
n2

)
−
(

x2 sin(nx)
n

+
2xcos(nx)

n2 − 2sin(nx)
n3

)]2π

0

=

[(
2x− x2

π
+

2
n2π

)
sin(nx)

n
+

(
2− 2x

π

)
cos(nx)

n2

]2π

0

=

(
2− 4π

π

)
1
n2 − (2)

1
n2 =− 4

n2
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c) f (x) =
{

x, 0 ≤ x < π

2π− x, π ≤ x ≤ 2π

(i) ⟨ f (x)⟩= 1
π

∫
π

0
xdx+

1
π

∫ 2π

π

(2π− x)dx

=

[
x2

2π

]π

0
+

[
2x− x2

2π

]2π

π

=
π

2
+4π− 4π

2
−2π+

π

2
= π

(ii) ⟨ f (x)x⟩= 1
π

∫
π

0
x2dx+

1
π

∫ 2π

π

(2πx− x2)dx

=

[
x3

3π

]π

0
+

[
x2 − x3

3π

]2π

π

=
π2

3
+4π

2 − 8π2

3
−π

2 +
π2

3
= π

2

(iii) ⟨ f (x)sin(nx)⟩= 1
π

∫
π

0
xsin(nx)dx+

1
π

∫ 2π

π

(2π− x)sin(nx)dx

=

[
sin(nx)

n2π
− xcos(nx)

nπ

]π

0
+

[
−2cos(nx)

n
− sin(nx)

n2π
+

xcos(nx)
nπ

]2π

π

=−(−1)n

n
− 2(−1)2n

n
+

2(−1)2n

n
+

2(−1)n

n
− (−1)n

n
= 0

(iv) ⟨ f (x)cos(nx)⟩= 1
π

∫
π

0
xcos(nx)dx+

1
π

∫ 2π

π

(2π− x)cos(nx)dx

=

[
cos(nx)

n2π
+

xsin(nx)
nπ

]π

0
+

[
2sin(nx)

n
− cos(nx)

n2π
− xsin(nx)

nπ

]2π

π

=
(−1)n

n2π
− 1

n2π
− (−1)2n

n2π
+

(−1)n

n2π
=

2[(−1)n −1]
n2π
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d) f (x) =
{

−1, 0 ≤ x < π

1, π ≤ x ≤ 2π

(i) ⟨ f (x)⟩=−1
π

∫
π

0
1dx+

1
π

∫ 2π

π

1dx

=−
[ x

π

]π

0
+
[ x

π

]2π

π

=−1+2−1 = 0

(ii) ⟨ f (x)x⟩=−1
π

∫
π

0
xdx+

1
π

∫ 2π

π

xdx

=−
[

x2

2π

]π

0
+

[
x2

2π

]2π

π

=−π

2
+

4π

2
− π

2
= π

(iii) ⟨ f (x)sin(nx)⟩=−1
π

∫
π

0
sin(nx)dx+

1
π

∫ 2π

π

sin(nx)dx

=

[
cos(nx)

nπ

]π

0
+

[
−cos(nx)

nπ

]2π

π

=
(−1)n −1

nπ
− [(−1)2n − (−1)n)

nπ
=

2[(−1)n −1]
nπ

(iv) ⟨ f (x)cos(nx)⟩=−1
π

∫
π

0
cos(nx)dx+

1
π

∫ 2π

π

cos(nx)dx

=−
[

sin(nx)
nπ

]π

0
+

[
sin(nx)

nπ

]2π

π

= 0

Worked Solution 13.5 (see Problem 13.5)
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a) ⟨sin(nx)sin(mx)⟩= 1
π

∫ 2π

0
sin(nx)sin(mx)dx

Recall that cos(A+B) = cosAcosB− sinAsinB

∴ cos(A−B) = cosAcosB+ sinAsinB

∴ cos(A−B)− cos(A+B) = 2sinAsinB

from which it follows that

⟨sin(nx)sin(nx)⟩= 1
2π

∫ 2π

0
[cos[(n−m)x]− cos[(n+m)x]]dx

=
1

2π

[
sin[(n−m)x]

n−m
− sin[(n+m)x]

n+m

]2π

0

At a first glance the above expression simply equals zero.

But now recall from the power series expansion for sinx that

sinx = x+O(x2)

from which it follows that:

lim
n→m

sin[(n−m)x]
n−m

=
(n−m)x

n−m
= x

lim
n→−m

sin[(n+m)x]
n+m

=
(n+m)x

n+m
= x
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∴ ⟨sin(nx)sin(mx)⟩=


0, m = 0 or n = 0 or m ̸= |n|

1, m = n and n ̸= 0 and m ̸= 0

−1, m =−n and n ̸= 0 and m ̸= 0

b) ⟨sin(nx)cos(mx)⟩= 1
π

∫ 2π

0
sin(nx)cos(mx)dx

Recall that sin(A+B) = sinAcosB+ cosAsinB

∴ sin(A−B) = sinAcosB− cosAsinB

∴ sin(A+B)+ sin(A−B) = 2sinAcosB

from which it follows that

⟨sin(nx)cos(nx)⟩= 1
2π

∫ 2π

0
[sin[(n+m)x]+ sin[(n−m)x]]dx

=− 1
2π

[
cos[(n+m)x]

(n+m)
+

cos[(n−m)x]
n−m

]2π

0
= 0
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c) ⟨cos(nx)cos(mx)⟩= 1
π

∫ 2π

0
cos(nx)cos(mx)dx

Recall that cos(A+B) = cosAcosB− sinAsinB

∴ cos(A−B) = cosAcosB+ sinAsinB

∴ cos(A−B)+ cos(A+B) = 2cosAcosB

from which it follows that

⟨cos(nx)cos(nx)⟩= 1
2π

∫ 2π

0
[cos[(n−m)x]+ cos[(n+m)x]]dx

=
1

2π

[
sin[(n−m)x]

n−m
+

sin[(n+m)x]
n+m

]2π

0

Recalling that

lim
n→m

sin[(n−m)x]
n−m

=
(n−m)x

n−m
= x

lim
n→−m

sin[(n+m)x]
n+m

=
(n+m)x

n+m
= x

It follows that

⟨cos(nx)cos(mx)⟩=


0, m ̸= |n|

1, m = |n| and n ̸= 0 and m ̸= 0

2, m = |n| and n = 0 and m = 0



14

Fourier series

14.1 Learning outcomes
You should be able to:

• Derive integral expressions for the Fourier coefficients.

• Take advantage of Kronecker delta notation where appro-
priate.

• Derive Parseval’s theorem in Fourier analysis.

• Determine the Fourier series for simple functions.

• Apply Fourier series and Parseval’s theorem to determine
the sum of given infinite series.

14.2 A general Fourier series
In the previous session, it was shown that some functions can be
approximated using series of sine waves multiplied by a set of
weighted coefficients. An integral equation was then provided

216
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to determine these coefficients. Such a series is known as a sine
series. The more general Fourier series expansion of a function
takes the form

f (x) =
a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx)

Introducing the Kronecker delta
As part of the weekly exercise from the last session, some par-
ticularly useful expressions were derived, which will help to de-
termine integral expressions for a0, an and bn, notably:

⟨sin(nx)sin(mx)⟩ =


0, m = 0 or n = 0 or m ̸= |n|

1, m = n and n ̸= 0 and m ̸= 0

−1, m =−n and n ̸= 0 and m ̸= 0

⟨sin(nx)cos(mx)⟩ = 0

⟨cos(nx)cos(mx)⟩ =


0, m ̸= |n|

1, m = |n| and n ̸= 0 and m ̸= 0

2, m = |n| and n = 0 and m = 0

where

⟨·⟩= 1
π

∫ 2π

0
·dx

Now consider a new notation, the Kronecker delta, δi, j, de-
fined by

δi, j =

{
0, i ̸= j
1, i = j
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from which it can be seen that providing n > 0 and m > 0

⟨cos(nx)cos(mx)⟩= ⟨sin(nx)sin(mx)⟩= δn,m

Challenge 14.1 Given that

⟨cos(nx)cos(mx)⟩= ⟨sin(nx)sin(mx)⟩= δn,m (14.1)

and
⟨sin(nx)cos(mx)⟩= 0 (14.2)

where

⟨·⟩= 1
π

∫ 2π

0
·dx

determine an expression for the bn coefficients in the Fourier
series

f (x) =
a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx) (14.3)

Considering our experience from the last session, to determine
the bn coefficients, let us consider the following integral expres-
sion in relation to Eq. (14.3):

⟨ f (x)sin(mx)⟩=
〈(

a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx)

)
sin(mx)

〉
which can be broken down to say

⟨ f (x)sin(mx)⟩= a0

2
⟨sin(mx)⟩

+
∞

∑
n=1

an ⟨cos(nx)sin(mx)⟩

+
∞

∑
n=1

bn ⟨sin(nx)sin(mx)⟩
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because ∫ ∞

∑
n=1

fn(x)dx =
∞

∑
n=1

∫
fn(x)dx (14.4)

Noting that

⟨sin(mx)⟩= 1
π

∫ 2π

0
sin(mx)dx =

1
π

[
−cos(mx)

m

]2π

0
= 0 (14.5)

and recalling ⟨cos(nx)sin(mx)⟩ = 0 along with Eq. (14.1) (note
that the summations above are both from n = 1), it follows that

⟨ f (x)sin(mx)⟩=
∞

∑
n=1

bnδn,m = bm (14.6)

and therefore

bn =
1
π

∫ 2π

0
f (x)sin(nx)dx

Challenge 14.2 Following on from the previous challenge, de-
termine an expression for the an coefficients.

To obtain the an coefficients let us consider another integral ex-
pression in relation to Eq. (14.3):

⟨ f (x)cos(mx)⟩=
〈(

a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx)

)
cos(mx)

〉
which can be broken down to say

⟨ f (x)cos(mx)⟩= a0

2
⟨cos(mx)⟩

+
∞

∑
n=1

an ⟨cos(nx)cos(mx)⟩

+
∞

∑
n=1

bn ⟨sin(nx)cos(mx)⟩
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Noting that

⟨cos(mx)⟩= 1
π

∫ 2π

0
cos(mx)dx =

1
π

[
sin(mx)

m

]2π

0
= 0 (14.7)

and again recalling ⟨cos(nx)sin(mx)⟩= 0 along with Eq. (14.1),
it follows that

⟨ f (x)cos(mx)⟩=
∞

∑
n=1

anδn,m = am (14.8)

and therefore

an =
1
π

∫ 2π

0
f (x)cos(nx)dx

Challenge 14.3 Determine an associated expression for the a0
coefficient.

To obtain the a0 coefficients let us consider another integral ex-
pression in relation to Eq. (14.3):

⟨ f (x)⟩=
〈

a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx)

〉
which can be broken down to say

⟨ f (x)⟩=
〈a0

2

〉
+

∞

∑
n=1

an ⟨cos(nx)⟩+
∞

∑
n=1

bn ⟨sin(nx)⟩

Recalling Eqs. (14.5) and (14.7) it is then seen that

⟨ f (x)⟩= a0(2π)

2π
= a0 (14.9)

and therefore

a0 =
1
π

∫ 2π

0
f (x)dx
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14.3 Parseval’s theorem
Another important result to determine is for

⟨ f 2⟩= 1
π

∫ 2π

0
f 2dx (14.10)

where f (x) can approximated by the Fourier series, as previously
presented in Eq. (14.3).

Note that partial substitution of Eq. (14.3) into Eq. (14.10)
leads to

〈
f 2〉=〈 f (x)

(
a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx)

)〉
which can be broken down to say〈

f 2〉= a0

2
⟨ f (x)⟩+

∞

∑
n=1

an ⟨ f (x)cos(nx)⟩+
∞

∑
n=1

bn ⟨ f (x)sin(nx)⟩

From Eq. (14.9) it can be seen that

a0

2
⟨ f (x)⟩= a2

0
2

From Eq. (14.8) it can be seen that
∞

∑
n=1

an ⟨ f (x)cos(nx)⟩=
∞

∑
n=1

a2
n

From Eq. (14.6) it can be seen that
∞

∑
n=1

bn ⟨ f (x)sin(nx)⟩=
∞

∑
n=1

b2
n

All of these results lead to the so-called Parseval’s theorem,
which states that
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1
π

∫ 2π

0
f 2dx =

a2
0

2
+

∞

∑
n=1

a2
n +

∞

∑
n=1

b2
n

Antoine Pareseval was another 18th/19th century French math-
ematician, best known for this theorem in so-called Fourier anal-
ysis.

14.4 Summary of key results
Any function, f (x), defined on the interval [0,2π] can be written
as a Fourier series of the form

f (x) =
a0

2
+

∞

∑
n=1

an cos(nx)+
∞

∑
n=1

bn sin(nx) (14.11)

where

a0 =
1
π

∫ 2π

0
f (x)dx (14.12)

an =
1
π

∫ 2π

0
f (x)cos(nx)dx (14.13)

bn =
1
π

∫ 2π

0
f (x)sin(nx)dx (14.14)

and, according to Parseval’s theorem,

1
π

∫ 2π

0
f 2dx =

a2
0

2
+

∞

∑
n=1

a2
n +

∞

∑
n=1

b2
n (14.15)

14.5 Problem sheet
Problem 14.1 (see Worked Solution 14.1)
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Consider the function f (x) = x−π, 0 ≤ x ≤ 2π

a) Determine the Fourier series.

b) Use Parseval’s theorem to show that
∞

∑
n=1

1
n2 =

π2

6

Problem 14.2 (see Worked Solution 14.2)

Consider the function f (x) = x(2π− x), 0 ≤ x ≤ 2π

a) Determine the Fourier series.

b) By considering f (π) show that
∞

∑
n=1

(−1)n

n2 =−π2

12

c) Use Parseval’s theorem to show that
∞

∑
n=1

1
n4 =

π4

90

Problem 14.3 (see Worked Solution 14.3)

Consider the function f (x) =
{

x, 0 ≤ x < π

2π− x, π ≤ x ≤ 2π

a) Determine the Fourier series.

b) By considering f (π) show that
∞

∑
n=0

1
(2n+1)2 =

π2

8

c) Use Parseval’s theorem to show that
∞

∑
n=0

1
(2n+1)4 =

π4

96

Problem 14.4 (see Worked Solution 14.4)

Consider the function f (x) =
{

−1, 0 ≤ x < π

1, π ≤ x ≤ 2π
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a) Determine the Fourier series.

b) By considering f (π/2) show that
∞

∑
n=0

(−1)n

2n+1
=

π

4

c) Use Parseval’s theorem to show that
∞

∑
n=0

1
(2n+1)2 =

π2

8

14.6 Worked solutions
Worked Solution 14.1 (see Problem 14.1)

Consider f (x) = x−π, 0 ≤ x ≤ 2π

a) Considering Eqs. (14.12) to (14.14) in conjunction with the
results from Problem 13.4a

a0 = ⟨(x−π)⟩ = 0

an = ⟨(x−π)cos(nx)⟩ = 0

bn = ⟨(x−π)sin(nx)⟩ =−2/n

and from Eq. (14.11)

f (x) =−2
∞

∑
n=1

sin(nx)
n

b) From Parseval’s theorem, Eq. (14.15)

⟨(x−π)2⟩=
∞

∑
n=1

b2
n = 4

∞

∑
n=1

1
n2
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and

⟨(x−π)2⟩ =
1
π

∫ 2π

0
(x−π)2dx =

1
π

[
(x−π)3

3

]2π

0

=
1
π

[
(2π−π)3

3
+

π3

3

]
=

2π2

3

Equating the two expressions above then leads to

∞

∑
n=1

1
n2 =

π2

6

Worked Solution 14.2 (see Problem 14.2)

Consider f (x) = x(2π− x), 0 ≤ x ≤ 2π

a) Considering Eqs. (14.12) to (14.14) in conjunction with the
results from Problem 13.4b

a0 = ⟨x(2π− x)⟩ = 4π2/3

an = ⟨x(2π− x)cos(nx)⟩ =−4/n2

bn = ⟨x(2π− x)sin(nx)⟩ = 0

and from Eq. (14.11)

f (x) =
2π2

3
−4

∞

∑
n=1

cos(nx)
n2

b) Considering f (π)

π(2π−π) =
2π2

3
−4

∞

∑
n=1

cos(nπ)

n2
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from which it follows that

π
2 =

2π2

3
−4

∞

∑
n=1

(−1)n

n2

and therefore
∞

∑
n=1

(−1)n

n2 =−π2

12

c) From Parseval’s theorem, Eq. (14.15)

⟨x2(2π− x)2⟩= ⟨4π
2x2 −4πx3 + x4⟩= 8π4

9
+16

∞

∑
n=1

1
n4

and

⟨x2(x−π)2⟩ =
1
π

∫ 2π

0
(4π

2x2 −4πx3 + x4)dx

=
1
π

[
4π2x3

3
−πx4 +

x5

5

]2π

0

=
1
π

[
32π5

3
−16π

5 +
32π5

5

]
=

16π4

15

Equating the two expressions above then leads to

16π4

15
=

8π4

9
+16

∞

∑
n=1

1
n4

and therefore
∞

∑
n=1

1
n4 =

π4

90

Worked Solution 14.3 (see Problem 14.3)
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Consider f (x) =
{

x, 0 ≤ x < π

2π− x, π ≤ x ≤ 2π

a) Considering Eqs. (14.12) to (14.14) in conjunction with the
results from Problem 13.4c from the last session

a0 = ⟨ f (x)⟩ = π

an = ⟨ f (x)⟩ =
2[(−1)n −1]

n2π

bn = ⟨ f (x)⟩ = 0

and from Eq. (14.11)

f (x) =
π

2
+

∞

∑
n=1

2[(−1)n −1]
n2π

cos(nx)

=
π

2
+

∞

∑
n=0

2[(−1)2n+1 −1]
(2n+1)2π

cos((2n+1)x)

=
π

2
− 4

π

∞

∑
n=0

cos((2n+1)x)
(2n+1)2

b) Considering f (π)

π =
π

2
+

4
π

∞

∑
n=0

1
(2n+1)2

from which it follows that

∞

∑
n=0

1
(2n+1)2 =

π2

8
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c) From Parseval’s theorem, Eq. (14.15)

⟨ f 2⟩ =
π2

2
+

∞

∑
n=1

[
2[(−1)n −1]

n2π

]2

=
π2

2
+

4
π2

∞

∑
n=1

[(−1)2n −2(−1)n +1]
n4

=
π2

2
+

8
π2

∞

∑
n=1

1+(−1)n+1

n4

=
π2

2
+

8
π2

∞

∑
n=0

1+(−1)2n+1+1

(2n+1)4

=
π2

2
+

16
π2

∞

∑
n=0

1
(2n+1)4

and

⟨ f 2⟩ =
1
π

∫
π

0
x2dx+

1
π

∫ 2π

π

(2π− x)2dx

=
1
π

[
x3

3

]π

0
+

1
π

[
(2π− x)3

3

]2π

π

=
1
π

[
π3

3
+

π3

3

]
=

2π2

3
Equating the two expressions above then leads to

2π2

3
=

π2

2
+

16
π2

∞

∑
n=0

1
(2n+1)4

and therefore
∞

∑
n=0

1
(2n+1)4 =

π4

96
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Worked Solution 14.4 (see Problem 14.4)

Consider f (x) =
{

−1, 0 ≤ x < π

1, π ≤ x ≤ 2π

a) Considering Eqs. (14.12) to (14.14) in conjunction with the
results from Problem 13.4d from the last session

a0 = ⟨ f (x)⟩ = 0

an = ⟨ f (x)⟩ = 0

bn = ⟨ f (x)⟩ =
2[(−1)n −1]

nπ

and from Eq. (14.11)

f (x) =
∞

∑
n=1

2[(−1)n −1]
nπ

sin(nx)

=−4
π

∞

∑
n=0

sin((2n+1)x)
2n+1

b) Considering f (π/2)

−1 =−4
π

∞

∑
n=0

sin((2n+1)π/2)
2n+1

=−4
π

∞

∑
n=0

(−1)n

2n+1

from which it follows that
∞

∑
n=0

(−1)n

2n+1
=

π

4
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c) From Parseval’s theorem, Eq. (14.15)

⟨ f 2⟩ =
∞

∑
n=1

[
2[(−1)n −1]

nπ

]2

=
4
π2

∞

∑
n=1

[(−1)2n −2(−1)n +1]
n2

=
8
π2

∞

∑
n=1

1+(−1)n+1

n2

=
8
π2

∞

∑
n=0

1+(−1)2n+1+1

(2n+1)2

=
16
π2

∞

∑
n=0

1
(2n+1)2

and

⟨ f 2⟩ =
1
π

∫
π

0
1dx+

1
π

∫ 2π

π

1dx

=
1
π
[x]π0 +

1
π
[x]2π

π

=
1
π
[π+2π−π] = 2

Equating the two expressions above then leads to

2 =
16
π2

∞

∑
n=0

1
(2n+1)2

and therefore
∞

∑
n=0

1
(2n+1)2 =

π2

8
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Vectors and matrices

15.1 Learning outcomes
You should be able to:

• Understand the difference between scalars, vectors and
matrices.

• Perform basic matrix arithmetic including matrix multipli-
cation.

• Understand the meaning of a transpose matrix, identity
matrix and the trace of a matrix.

• Determine the dot product of two vectors.

• Derive a rotation matrix, L for a two-dimensional carte-
sian system.

• Show that the rotated form of a matrix A is found from
A′ = LALT.

231
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15.2 Scalars, vectors and matrices
A scalar is a quantity in which direction is either not applicable
(as in temperature) or not specified (as in speed). Scalars are
typically observed in typeface as italic letters (e.g. a, b).

A vector is a quantity in which both the magnitude and direc-
tion must be specified (such as velocity). Vectors are typically
observed in typeface as lower case bold faced letters (e.g. a, b).
When handwritten, vectors are commonly indicated by placing
a single underline (e.g. a, b).

A matrix is a set of quantities contained within a rectangular
array. Matrices are typically observed in typeface as upper case
bold faced letters (e.g. A, B). When handwritten, matrices are
commonly indicated by upper case letters with a single underline
(e.g. A, B).

The components of a vector, a, are often specified in terms
of scalars with a single subscript (e.g. ai) such that for a vector
containing N components, it can be said that

a =


a1
a2
...
aN−1
aN


The components of a matrix, A, are often specified in terms

of scalars with a double subscripts, Ai, j, where i denotes the row
number and j denotes the column number. An N by M matrix
would therefore take the form
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A =



A1,1 A1,2 . . . A1,M−1 A1,M
A2,1 A2,2 . . . A2,M−1 A2,M
...

... . . . ...
...

AN−2,1 AN−2,2 . . . AN−2,M−1 AN−2,M
AN−1,1 AN−1,2 . . . AN−1,M−1 AN−1,M
AN,1 AN,2 . . . AN,M−1 AN,M


A vector is a matrix with one column. A scalar is a matrix

with one column and one row.

15.3 Matrix arithmetic
Providing matrices are the same size, matrices can be added and
subtracted without too much difficulty, for example:

A+B =


A1,1 +B1,1 A1,2 +B1,2 . . . A1,M +B1,M
A2,1 +B2,1 A2,2 +B2,2 . . . A2,M +B2,M
...

... . . . ...
AN,1 +BN,1 AN,2 +BN,2 . . . AN,M +BN,M



A−B =


A1,1 −B1,1 A1,2 −B1,2 . . . A1,M −B1,M
A2,1 −B2,1 A2,2 −B2,2 . . . A2,M −B2,M
...

... . . . ...
AN,1 −BN,1 AN,2 −BN,2 . . . AN,M −BN,M


It is also straightforward to multiply matrices by scalar quan-

tities:
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λA =


λA1,1 λA1,2 . . . λA1,M
λA2,1 λA2,2 . . . λA2,M
...

... . . . ...
λAN,1 λAN,2 . . . λAN,M


Multiplying a matrix by another matrix is more complicated.

Furthermore, for matrix multiplication to be possible, the first
matrix must have the same number of columns as the number
of rows in the second matrix. Consider two matrices, A and B,
defined as follows:

A =


A1,1 A1,2 . . . A1,M
A2,1 A2,2 . . . A2,M
...

... . . . ...
AN,1 AN,2 . . . AN,M

 (15.1)

B =


B1,1 B1,2 . . . B1,P
B2,1 B2,2 . . . B2,P
...

... . . . ...
BM,1 BM,2 . . . BM,P


The product of A and B will take the form

AB =


(AB)1,1 (AB)1,2 . . . (AB)1,P
(AB)2,1 (AB)2,2 . . . (AB)2,P
...

... . . . ...
(AB)N,1 (AB)N,2 . . . (AB)N,P


where

(AB)i, j =
M

∑
k=1

Ai,kBk, j
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15.4 Transpose, identity and trace
The term AT indicates the transpose of the matrix, A. Consider
the definition of A given in Eq. (15.1).

AT =


A1,1 A2,1 . . . AN,1
A1,2 A2,2 . . . AN,2
...

... . . . ...
A1,M A2,M . . . AN,M


The term I denotes an identity matrix. Identity matrices are

square matrices where all elements are zero except for the central
diagonal elements which are all one, i.e.,

I =


1 0 . . . 0
0 1 . . . 0
...

... . . . ...
0 0 . . . 1


Note that, given Eq. (15.1), IA = A where I would be a

N ×N square matrix. In contrast, AI = A where I would be a
M×M square matrix.

The trace of a matrix is the sum of the elements on the central
diagonal of a square matrix. For example, consider Eq. (15.1)
when M = N:

trace(A) =
N

∑
i=1

Ai,i

15.5 Dot product
From the above discussion about matrix multiplication, it can
be understood that the multiplication of two vectors is not pos-
sible. However, a useful associated operation is the so-called
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dot product. Considered two vectors a and b, both containing N
elements. The dot product of a and b can be written as follows:

a ·b = aTb =
[

a1 a2 . . . aN
]


b1
b2
...
bN

=
N

∑
i=1

aibi
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15.6 Rotation matrix
Challenge 15.1 Let u and v be displacements in the x and y di-
rection, respectively (see Fig. 15.1). Now consider an alternative
coordinate system, x′ and y′, obtained by rotating the x and y axes
anti-clockwise by an angle, θ, about the origin, (0,0). Now let u′

and v′ be the associated displacements in the x′ and y′ direction,
respectively. Determine expressions for u′ and v′ in terms of u
and v.

θ

y

x

x'

u'

u

v'

v
y'

Figure 15.1: Schematic diagram showing a rotated coordinate
system.

The first step is to consider a sketch as shown in Fig. 15.2.
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θ

θ

u

v

AO

B
C

P
�

Figure 15.2: Some geometry to help with determining a rotation
matrix.

It can be seen that u′ = OB+BC and v′ = PC. It is eas-
ily seen that OB = usecθ. Furthermore, BC = BPsinθ and
PC = BPcosθ where BP = v−AB. It is also easily seen that
AB = u tanθ. Therefore PC = (v−u tanθ)cosθ and BC = (v−
u tanθ)sinθ. It follows that

u′ = OB+BC
= usecθ+(v−u tanθ)sinθ

= usecθ+ vsinθ−usin2
θsecθ

= u(1− sin2
θ)secθ+ vsinθ

= ucos2 θsecθ+ vsinθ

= ucosθ+ vsinθ

and
v′ = PC = vcosθ−usinθ
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Challenge 15.2 Given that u′ = ucosθ + vsinθ and v′ =
vcosθ− usinθ, determine the rotation matrix, L, that satisfies
the equation

u′ = Lu

where

u′ =
[

u′

v′

]
and u =

[
u
v

]
Given that u′ = Lu it follows that[

u′

v′

]
=

[
L11 L12
L21 L22

][
u
v

]
=

[
L11u+L12v
L21u+L22v

]
(15.2)

such that u′ = L11u+L12v and v′ = L21u+L22v.
Given that u′ = ucosθ+ vsinθ and v′ = vcosθ− usinθ it

follows that L11 = cosθ, L12 = sinθ, L21 = −sinθ and L22 =
cosθ such that it can be said that

L =

[
cosθ sinθ

−sinθ cosθ

]
(15.3)

Challenge 15.3 Determine LLT.

LLT =

[
cosθ sinθ

−sinθ cosθ

][
cosθ −sinθ

sinθ cosθ

]

=

[
cos2 θ+ sin2

θ cosθsinθ− cosθsinθ

cosθsinθ− cosθsinθ cos2 θ+ sin2
θ

]

=

[
1 0
0 1

]
= I
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Orthogonality of rotation matrices
When a matrix B satisfies the relationship BBT = I, it is said to
be orthogonal.

Given an appropriate form of L, Eq. (15.2) can enable the
transformation of a vector, u, from any coordinate system (x,y,z)
to any other coordinate system (x′,y′,z′). Furthermore, all rota-
tion matrices are orthogonal. Hence it is a general case that

LLT = LTL = I (15.4)

15.7 Rotating a matrix
A rotation matrix can also be used to transform a matrix to a
new coordinate system. How this is achieved requires some ad-
ditional thought concerning matrices and their relationship with
vectors through matrix multiplication.

Challenge 15.4 Consider the relationship

a = Ab (15.5)

where a and b are vectors and A is a matrix.
It can be said that a′ and b′ associated with a new coordinate

system can be found from

a′ = La and b′ = Lb (15.6)

where L is a rotation matrix.
Let A′ represent A in the new coordinate system such that

a′ = A′b′ (15.7)

Determine an expression for A′ in terms of A and L.
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Substituting the expressions in Eq. (15.6) into Eq. (15.7) leads
to

La = A′Lb (15.8)

Multiplying both sides of Eq. (15.8) by LT leads to

LTLa = LTA′Lb

and exploiting the identity in Eq. (15.4) yields

Ia = a = LTA′Lb (15.9)

Comparing Eqs. (15.9) with (15.5) then reveals that

A = LTA′L

and multiplying both sides by L and LT gives

LALT = LLTA′LLT

such that invoking again Eq. (15.4) yields

A′ = LALT (15.10)

which is an expression that can be used to rotate a matrix , A, to
any new coordinate system.

15.8 Problem sheet
Problem 15.1 (see Worked Solution 15.1)

Let

a =

 a1
a2
a3

 b =

 b1
b2
b3

 c =

 c1
c2
c3
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and determine the following:

a) a ·b b) b ·a
c) (a+b) · c d) a · c+b · c
e) c · (a+b) f) a · (b+ c)
g) (a ·b)c h) (c ·b)a

Problem 15.2 (see Worked Solution 15.2)

Let

a =

 3
1
4

 B =

 0 1
0 −2
2 3

 C =

 1 0 −1
2 3 0
0 3 4


and determine the following:

a) CB b) BTCT c) BCT

d) C2 e) CCT f) CTC
g) B2 h) BBT i) BTB
j) aTCa

Problem 15.3 (see Worked Solution 15.3)

Verify that the following matrix is orthogonal

G =

 0 −0.80 −0.60
0.80 −0.36 0.48
0.60 0.48 −0.64


15.9 Worked solutions
Worked Solution 15.1 (see Problem 15.1)
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Let

a =

 a1
a2
a3

 b =

 b1
b2
b3

 c =

 c1
c2
c3


a) a ·b = a1b1 +a2b2 +a3b3

b) b ·a = b1a1 +b2a2 +b3a3
∴ a ·b = b ·a

c) (a+b) · c = (a1 +b1)c1 +(a2 +b2)c2 +(a3 +b3)c3

d) a · c+b · c = a1c1 +a2c2 +a3c3 +b1c1 +b2c2 +b3c3

e) c · (a+b) = c1(a1 +b1)+ c2(a2 +b2)+ c3(a3 +b3)
∴ (a+b) · c = a · c+b · c = c · (a+b)

f) a · (b+ c) = a1(b1 + c1)+a2(b2 + c2)+a3(b3 + c3)
∴ a · (b+ c) ̸= c · (a+b)

g) (a ·b)c =

 (a1b1 +a2b2 +a3b3)c1
(a1b1 +a2b2 +a3b3)c2
(a1b1 +a2b2 +a3b3)c3



h) (c ·b)a =

 (c1b1 + c2b2 + c3b3)a1
(c1b1 + c2b2 + c3b3)a2
(c1b1 + c2b2 + c3b3)a3


∴ (a ·b)c ̸= (c ·b)a

Worked Solution 15.2 (see Problem 15.2)
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Let

a =

 3
1
4

 B =

 0 1
0 −2
2 3

 C =

 1 0 −1
2 3 0
0 3 4


a)

CB =

 1×0+0×0−1×2 1×1+0×−2−1×3
2×0+3×0+0×2 2×1+3×−2+0×3
0×0+3×0+4×2 0×1+3×−2+4×3



=

 0+0−2 1+0−3
0+0+0 2−6+0
0+0+8 0−6+12

=

 −2 −2
0 −4
8 6


b)

BTCT =

[
0 0 2
1 −2 3

] 1 2 0
0 3 3
−1 0 4


=

[
0+0−2 0+0+0 0+0+8
1+0−3 2−6+0 0−6+12

]

=

[
−2 0 8
−2 −4 6

]
= (CB)T

c) BCT is not possible because the number of columns in B is
not the same as the number of rows in CT.
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d)

C2 =

 1 0 −1
2 3 0
0 3 4

 1 0 −1
2 3 0
0 3 4



=

 1+0+0 0+0−3 −1+0−4
2+6+0 0+9+0 −2+0+0
0+6+0 0+9+12 0+0+16



=

 1 −3 −5
8 9 −2
6 21 16


e)

CCT =

 1 0 −1
2 3 0
0 3 4

 1 2 0
0 3 3
−1 0 4



=

 1+0+1 2+0+0 0+0−4
2+0+0 4+9+0 0+9+0
0+0−4 0+9+0 0+9+16



=

 2 2 −4
2 13 9
−4 9 25
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f)

CTC =

 1 2 0
0 3 3
−1 0 4

 1 0 −1
2 3 0
0 3 4



=

 1+4+0 0+6+0 −1+0+0
0+6+0 0+9+9 0+0+12
−1+0+0 0+0+12 1+0+16



=

 5 6 −1
6 18 12
−1 12 17


g) B2 is not possible because the number of columns in B is
not the same as the number of rows in B.

h)

BBT =

 0 1
0 −2
2 3

[ 0 0 2
1 −2 3

]

=

 0+1 0−2 0+3
0−2 0+4 0−6
0+3 0−6 4+9

=

 1 −2 3
−2 4 −6
3 −6 13


i)

BTB =

[
0 0 2
1 −2 3

] 0 1
0 −2
2 3


=

[
0+0+4 0+0+6
0+0+6 1+4+9

]
=

[
4 6
6 14

]
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j) To calculate aTCa, it is necessary to first calculate aTC

aTC =
[

3 1 4
] 1 0 −1

2 3 0
0 3 4


=
[

3+2+0 0+3+12 −3+0+16
]

=
[

5 15 13
]

Now it can be seen that

aTCa =
[

5 15 13
] 3

1
4

= 15+15+52 = 82

Worked Solution 15.3 (see Problem 15.3)

To determine if G is orthogonal it is necessary to check that
GGT = I.

GGT =

 0 −0.80 −0.60
0.80 −0.36 0.48
0.60 0.48 −0.64

 0 0.80 0.60
−0.80 −0.36 0.48
−0.60 0.48 −0.64



=

 0+0.64+0.36 0+0.29−0.29 0−0.38+0.38
0+0.29−0.29 0.64+0.13+0.23 0.48−0.17−0.31
0−0.38+0.38 0.48−0.17−0.31 0.36+0.23+0.41



=

 1 0 0
0 1 0
0 0 1

= I

Therefore G is orthogonal.
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Matrix operations with
stress and strain

16.1 Learning outcomes
You should be able to:

• Derive the equation for a Mohr circle using a rotation ma-
trix.

• Write out three dimensional Hooke’s law in matrix nota-
tion.

• Use a rotation matrix to show that Hooke’s law applies for
a coordinate system that does not necessarily represent the
principal stress axes.

16.2 Stress, strain and displacement
Let τ [ML−1T−2] and ε [-] be matrices that contain all the stresses
and strains acting on a control-volume of rock, respectively, such
that:

248
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τ =

 τxx τxy τxz
τyx τyy τyz
τzx τzy τzz

 , ε=

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


Stress equals force divided by area. Strain is a measure of

the extent to which a body is deformed when it is subjected to a
stress. Quite literally, it is the ratio of a change in length divided
by the original length.

The arrangement of the nine stresses in the stress tensor on a
control-volume is shown in Fig. 16.1.

τ
xz

τ
xy

τ
xx

x

z

y

τ
yz

τ
yy

τ
yx

τ
zz

τ
zy

τ
zx

Figure 16.1: Schematic diagram showing the nine stresses in a
stress tensor.

There are two types of stress, normal stress and shear stress:
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τxx Normal stress in the x-direction acting on the face
normal to the x-direction.

τxy Shear stress in the y-direction acting on the face
normal to the x-direction.

τxz Shear stress in the z-direction acting on the face
normal to the x-direction.

τyx Shear stress in the x-direction acting on the face
normal to the y-direction.

τyy Normal stress in the y-direction acting on the face
normal to the y-direction.

τyz Shear stress in the z-direction acting on the face
normal to the y-direction.

τzx Shear stress in the x-direction acting on the face
normal to the z-direction.

τzy Shear stress in the y-direction acting on the face
normal to the z-direction.

τzz Normal stress in the z-direction acting on the face
normal to the z-direction.

Let u [L], v [L] and w [L] be displacements in the x, y and z
direction, respectively. Collectively, these displacements quan-
tify the change in position of a given particle of rock. The strains
contained within ε can be written as partial derivatives of u, v and
w as follows:
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ε =

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



=



∂u
∂x

1
2

(
∂u
∂y

+
∂v
∂x

)
1
2

(
∂u
∂z

+
∂w
∂x

)
1
2

(
∂u
∂y

+
∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂z

+
∂w
∂y

)
1
2

(
∂u
∂z

+
∂w
∂x

)
1
2

(
∂v
∂z

+
∂w
∂y

)
∂w
∂z


(16.1)

Note that εxy = εyx, εxz = εzx and εyz = εzy.
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16.3 The Mohr circle
Challenge 16.1 Let τ be a two dimensional stress matrix for a
coordinate system defined by an associated x and y axes where

τ =

[
τxx τxy
τyx τyy

]
Now consider an alternative coordinate system, x′ and y′, ob-

tained by rotating the x and y axes anti-clockwise by an angle, θ,
about the origin, (0,0).

Show that the corresponding stress matrix in this rotated co-
ordinate system takes the form

τ ′ =
[

τ′xx τ′xy
τ′yx τ′yy

]
where

τ′xx =
1
2(τxx + τyy)+

1
2(τxx − τyy)cos2θ+ τxy sin2θ

τ′xy = τ′yx = τxy cos2θ+ 1
2(τyy − τxx)sin2θ

τ′yy =
1
2(τxx + τyy)− 1

2(τxx − τyy)cos2θ− τxy sin2θ

For a two-dimensional system

τ =

[
τxx τxy
τyx τyy

]
and the rotation matrix takes the form

L =

[
cosθ sinθ

−sinθ cosθ

]
It follows that the stress matrix for the new coordinate system

can be found from τ ′ = LτLT where
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τ ′ =
[

τ′xx τ′xy
τ′yx τ′yy

]
To determine expressions for the individual components of

τ ′, first determine the matrix M, defined by M = Lτ and

M =

[
Mxx Mxy
Myx Myy

]
It follows that

Mxx = τxx cosθ+ τyx sinθ

Mxy = τxy cosθ+ τyy sinθ

Myx =−τxx sinθ+ τyx cosθ

Myy =−τxy sinθ+ τyy cosθ

Now consider that

LT =

[
cosθ −sinθ

sinθ cosθ

]
It follows that:

τ′xx = Mxx cosθ+Mxy sinθ

τ′xy =−Mxx sinθ+Mxy cosθ

τ′yx = Myx cosθ+Myy sinθ

τ′yy =−Myx sinθ+Myy cosθ

and

τ′xx = (τxx cosθ+ τyx sinθ)cosθ+(τxy cosθ+ τyy sinθ)sinθ

τ′xy =−(τxx cosθ+ τyx sinθ)sinθ+(τxy cosθ+ τyy sinθ)cosθ

τ′yx = (−τxx sinθ+ τyx cosθ)cosθ+(−τxy sinθ+ τyy cosθ)sinθ

τ′yy =−(−τxx sinθ+ τyx cosθ)sinθ+(−τxy sinθ+ τyy cosθ)cosθ

which reduces further to
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τ′xx = τxx cos2 θ+(τyx + τxy)cosθsinθ+ τyy sin2
θ

τ′xy = τxy cos2 θ+(τyy − τxx)cosθsinθ− τyx sin2
θ

τ′yx = τyx cos2 θ+(τyy − τxx)cosθsinθ− τxy sin2
θ

τ′yy = τyy cos2 θ− (τyx + τxy)cosθsinθ+ τxx sin2
θ

Then recalling that τxy = τyx:

τ′xx = τxx cos2 θ+2τxy cosθsinθ+ τyy sin2
θ

τ′xy = τxy(cos2 θ− sin2
θ)+(τyy − τxx)cosθsinθ

τ′yx = τxy(cos2 θ− sin2
θ)+(τyy − τxx)cosθsinθ

τ′yy = τyy cos2 θ−2τxy cosθsinθ+ τxx sin2
θ

Now also recall that

cos(A+B) = cosAcosB− sinAsinB
sin(A+B) = sinAcosB+ cosAsinB

from which it follows that

cos2θ = cos2 θ− sin2
θ

sin2θ = 2cosθsinθ

2cos2 θ = cos2 θ+1− sin2
θ = 1+ cos2θ

2sin2
θ = sin2

θ+1− cos2 θ = 1− cos2θ

and

τ′xx =
1
2(τxx + τyy)+

1
2(τxx − τyy)cos2θ+ τxy sin2θ

τ′xy = τ′yx = τxy cos2θ+ 1
2(τyy − τxx)sin2θ

τ′yy =
1
2(τxx + τyy)− 1

2(τxx − τyy)cos2θ− τxy sin2θ
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Challenge 16.2 Show that for the case when x and y represent
the principal stress axes, a plot of τ′xy against τ′xx or τ′yy takes the
form of a circle of radius,

∣∣(τxx − τyy)/2
∣∣, and center coordi-

nates, ((τxx + τyy)/2,0), which is the so-called Mohr circle.

Note that in an x-y Cartesian coordinate system, all points
(x,y) on a circle with center coordinates, (a,b), and radius, r,
satisfy the equation, (x−a)2 +(y−b)2 = r2.

Also note that if τxy = τyx = 0, x and y are defined as the
principal stress axes.

Consider the case when x and y represent the principal stress
axes. In this case τxy = 0 and

τ′xx =
1
2(τxx + τyy)+

1
2(τxx − τyy)cos2θ

τ′xy = τ′yx =
1
2(τyy − τxx)sin2θ

τ′yy =
1
2(τxx + τyy)− 1

2(τxx − τyy)cos2θ

Now notice that[
τ′xx − 1

2(τxx + τyy)
]2

= 1
4(τxx − τyy)

2 cos2 2θ[
τ′xy
]2

= 1
4(τxx − τyy)

2 sin2 2θ[
τ′yy − 1

2(τxx + τyy)
]2

= 1
4(τxx − τyy)

2 cos2 2θ

Hence it can be seen that:[
τ′xx −

(
τxx+τyy

2

)]2
+
(
τ′xy
)2

=
(

τxx−τyy
2

)2[
τ′yy −

(
τxx+τyy

2

)]2
+
(
τ′xy
)2

=
(

τxx−τyy
2

)2

which, given the equation for a circle, (x− a)2 +(y− b)2 = r2,
show that a plot of τ′xy against τ′xx or τ′yy takes the form of a circle
of radius

∣∣(τxx − τyy)/2
∣∣ and origin coordinates, ((τxx + τyy)/2,0).

This is the so-called Mohr circle.
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Challenge 16.3 Finally, also show that trace(τ ′) = trace(τ ).

Consider trace(τ ) = τxx + τyy and trace(τ ′) = τ′xx + τ′yy

From part a) above:

τ′xx =
1
2(τxx + τyy)+

1
2(τxx − τyy)cos2θ+ τxy sin2θ

τ′yy =
1
2(τxx + τyy)− 1

2(τxx − τyy)cos2θ− τxy sin2θ

It follows that

trace(τ ′) =
1
2
(τxx + τyy)+

1
2
(τxx + τyy) = τxx + τyy

Hence it can be understood that

trace(τ ) = trace(τ ′)

In fact it is generally the case that the trace of a matrix is equal
to the trace of its rotated form.

16.4 Hooke’s law
For linear elastic systems, Hooke’s law can be used to relate
stress and strain. Consider the situation when all stresses are
zero except for τxx. Such a situation is often referred to as the
uniaxial stress assumption. The resulting strain in the associated
direction, εxx, can be found from

εxx =
τxx

E
where E [ML−1T−2] is the Young’s modulus.

In the above situation it is the case that εyy and εzz are also
non-zero and found from
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εyy = εzz =−νεxx

hence

εxx =
τxx

E
, εyy = εzz =− ν

E
τxx (16.2)

where ν [-] is the so-called Poisson ratio. The other strains, εxy =
εxz = εyz = 0 in this case.

If instead we consider the case when all stresses are zero
except for τyy, it is found that

εyy =
τyy

E
, εxx = εzz =− ν

E
τyy (16.3)

and again εxy = εxz = εyz = 0.
Similarly, if we consider the case when all stresses are zero

except for τzz, it is found that

εzz =
τzz

E
, εxx = εyy =− ν

E
τzz (16.4)

and again εxy = εxz = εyz = 0.

3D Hooke’s law on principal stress axes
Now it is assumed that only τxy = τxz = τyz = τyx = τzx = τzy = 0
and that τxx, τyy and τzz are all non-zero. In this case, the axes x, y
and z are said to be the principal stress axes. It is possible to use
the principle of superposition to determine the associated strains,
εxx, εyy and εzz resulting from the simultaneous application of τxx,
τyy and τzz. This is achieved by adding together the individual
strain contributions given in Eqs. (16.2) to (16.4) such that it can
be said that:

εxx =
1
E

τxx −
ν

E
τyy −

ν

E
τzz
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εyy =− ν

E
τxx +

1
E

τyy −
ν

E
τzz

εzz =− ν

E
τxx −

ν

E
τyy +

1
E

τzz

Challenge 16.4 When x, y and z are the principal stress axes

τ =

 τxx 0 0
0 τyy 0
0 0 τzz

 , ε=

 εxx 0 0
0 εyy 0
0 0 εzz


and

εxx =
1
E

τxx −
ν

E
τyy −

ν

E
τzz

εyy =− ν

E
τxx +

1
E

τyy −
ν

E
τzz

εzz =− ν

E
τxx −

ν

E
τyy +

1
E

τzz

Under such conditions, determine a compact expression for ε as
a function of τ .

After some further rearrangement it can be shown that:

εxx =
(1+ν)

E
τxx −

ν

E
(τxx + τyy + τzz)

εyy =
(1+ν)

E
τyy −

ν

E
(τxx + τyy + τzz)

εzz =
(1+ν)

E
τzz −

ν

E
(τxx + τyy + τzz)

Also note that if τxy = τxz = τyz = τyx = τzx = τzy = 0, it
is said that x, y and z represent the directions of the principal
stress axes. Furthermore, in this case, it can be understood that
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εxy = εxz = εyz = 0. Under these conditions, Hooke’s law in three
dimensions (3D) can be seen to take the compact form

ε=
(1+ν)

E
τ − ν

E
trace(τ )I

Challenge 16.5 Given that

ε=
(1+ν)

E
τ − ν

E
trace(τ )I (16.5)

determine a compact expression for τ as a function of ε.

First take the trace of both sides of Eq. (16.5) to get

trace(ε) = trace
[
(1+ν)

E
τ − ν

E
trace(τ )I

]

=
(1+ν)

E
trace(τ )− 3ν

E
trace(τ )

=
(1−2ν)

E
trace(τ )

It follows that

trace(τ ) =
E

(1−2ν)
trace(ε)

which on substitution into Eq. (16.5) leads to

ε=
(1+ν)

E
τ − ν

(1−2ν)
trace(ε)I

which when rearranged for τ leads to

τ =
E

(1+ν)
ε+

Eν

(1+ν)(1−2ν)
trace(ε)I (16.6)
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Shear modulus and the Lamé parameter
At this stage it is worth introducing two related mechanical prop-
erties, namely the shear modulus, G [ML−1T−2], and the Lamé
parameter, λ [ML−1T−2], which are found from:

G =
E

2(1+ν)
, λ =

Eν

(1+ν)(1−2ν)

such that Eq. (16.6) can be simplified to

τ = 2Gε+λtrace(ε)I

16.5 3D Hooke’s law on any general axes

Challenge 16.6 Consider a second coordinate system, (x′,y′,z′),
obtained from the principal stress coordinate system (x,y,z)
through a rotation matrix, L. The stress and strain matrices in the
new coordinate system are given by τ ′ = LτLT and ε′ = LεLT.

Given that
τ = 2Gε+λtrace(ε)I (16.7)

determine an expression for τ ′ as a function of ε′.

It follows that

τ ′ = L[2Gε+λtrace(ε)I]LT = 2GLεLT +λtrace(ε)LILT

Recall that because L is orthogonal, LLT = I. In the same
way, it follows that LTL = I. Now consider LILT. Substituting
I = LTL suggests that LILT = LLTLLT = I2 = I. Therefore

τ ′ = 2Gε′+λtrace(ε)I

Furthermore, it is known that trace(ε) = trace(ε′) (consider
Challenge 1c above). Consequently it can be understood that
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τ ′ = 2Gε′+λtrace(ε′)I

and hence it can be understood that Eqs. (16.5) and (16.7) are
also valid for when x, y and z are not necessarily the principal
stress directions.

Challenge 16.7 Given that τ = 2Gε+ λtrace(ε)I is valid for
non-zero shear stresses, determine expressions for the six shear
stresses in the stress tensor.

Recalling that

I =

 1 0 0
0 1 0
0 0 1


it follows that:

τxy = 2Gεxy, τxz = 2Gεxz, τyz = 2Gεyz

τyx = 2Gεyx, τzx = 2Gεzx, τzy = 2Gεzy

and furthermore, given that εxy = εyx, εxz = εzx and εyz = εzy, it
can now also be seen that τxy = τyx, τxz = τzx and τyz = τzy.



17

Vector calculus

17.1 Learning outcomes
You should be able to:

• Write out vector equations using unit vector notation.

• Find the gradient of scalars and vectors.

• Find the divergence of scalars and vectors.

• Show that the Laplacian of a vector is the divergence of
the gradient of a vector.

• Find the Laplacian of scalars and vectors.

17.2 Unit vector notation
When working in three dimensions, there are three axes to con-
sider, x, y and z. Hence, when one considers a velocity or a
displacement, for example, there are three components for each

262
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of the three directions. In this way, it is necessary to represent
these quantities as vectors with three elements.

Let u, v and w be displacements in the x, y and z direction, re-
spectively. These displacements can be contained within a vector
called, u. In this way it can be written that

u =

 u
v
w


Another popular method for expressing such information is

to take advantage of three unit vectors, i, j,k, which are defined
as follows:

i =

 1
0
0

 , j =

 0
1
0

 , k =

 0
0
1


such that it can also be stated that

u = ui+ vj+wk

Note that

ui+ vj+wk = u

 1
0
0

+ v

 0
1
0

+w

 0
0
1



=

 u
0
0

+
 0

v
0

+
 0

0
w



=

 u
v
w

= u
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17.3 Gradient
Consider a scalar quantity, T . Suppose that we are interested in
the gradients of T in the x, y and z direction:

∂T
∂x

,
∂T
∂y

,
∂T
∂z

A convenient shorthand for this is the so-called Del operator,
∇, often referred to as the gradient or grad operator. The gradient
of a scalar, T , takes the form:

grad(T ) = ∇T =



∂T
∂x

∂T
∂y

∂T
∂z


=

∂T
∂x

i+
∂T
∂y

j+
∂T
∂z

k

Challenge 17.1 Fick’s first law in Cartesian coordinates takes
the form:

Jx =−DE
∂c
∂x

, Jy =−DE
∂c
∂y

, Jz =−DE
∂c
∂z

where DE [ML−2] is the effective diffusion coefficient, c [ML−3]
is solute concentration and Jx [ML−2T−1], Jy [ML−2T−1] and Jz
[ML−2T−1] are solute fluxes in the x, y and z direction, respec-
tively. Use vector calculus notation to write Fick’s first law in a
compact form

The above set of equations can be written in a vector form as
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follows: 
Jx

Jy

Jz

=



−DE
∂c
∂x

−DE
∂c
∂y

−DE
∂c
∂z


Let J = Jxi+ Jyj+ Jzk. Then

J =−DE∇c

Gradient of a vector
Now consider a vector of displacement, u, defined by

u = ui+ vj+wk

where u, v and w denote displacements in the x, y and z direction,
respectively. Convention generally dictates that the gradient of
u would take the form

grad(u) = ∇u =



∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z


which is the same as saying

grad(u) = ∇u =
[

∇u ∇v ∇w
]

(17.1)

In terms of unit vectors, it is possible to state that
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grad(u) = grad(u)iT +grad(v)jT +grad(w)kT

Challenge 17.2 Use vector calculus notation to write the fol-
lowing set of relationships between strain and displacement in
compact form:

εxx =
∂u
∂x

, εxy = εyx =
1
2

(
∂u
∂y

+
∂v
∂x

)
,

εyy =
∂v
∂y

, εxz = εzx =
1
2

(
∂u
∂z

+
∂w
∂x

)
,

εzz =
∂w
∂z

, εyz = εzy =
1
2

(
∂v
∂z

+
∂w
∂y

)
.

The above set of equations can be written in matrix form as fol-
lows: εxx εxy εxz

εyx εyy εyz
εzx εzy εzz



=



∂u
∂x

1
2

(
∂u
∂y

+
∂v
∂x

)
1
2

(
∂u
∂z

+
∂w
∂x

)
1
2

(
∂u
∂y

+
∂v
∂x

)
∂v
∂y

1
2

(
∂v
∂z

+
∂w
∂y

)
1
2

(
∂u
∂z

+
∂w
∂x

)
1
2

(
∂v
∂z

+
∂w
∂y

)
∂w
∂z


Let u = ui+ vj+wk and
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ε=

 εxx εxy εxz
εyx εyy εyz
εzx εzy εzz


Recall that

∇u =



∂u
∂x

∂v
∂x

∂w
∂x

∂u
∂y

∂v
∂y

∂w
∂y

∂u
∂z

∂v
∂z

∂w
∂z


(17.2)

and

(∇u)T =



∂u
∂x

∂u
∂y

∂u
∂z

∂v
∂x

∂v
∂y

∂v
∂z

∂w
∂x

∂w
∂y

∂w
∂z


from which it follows that

ε=
1
2
[∇u+(∇u)T]

17.4 Divergence
A related operator is the divergence operator, div. The diver-
gence of the aforementioned vector, u, takes the form

div(u) = ∇ ·u = ∇
Tu =

∂u
∂x

+
∂v
∂y

+
∂w
∂z
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from which it can be better understood that

∇ =



∂

∂x

∂

∂y

∂

∂z


Challenge 17.3 Solute transport in a porous medium can be de-
scribed by

φ
∂c
∂t

=−∂Jx

∂x
− ∂Jy

∂y
− ∂Jz

∂z

where φ [-] is porosity, c [ML−3] is solute concentration, t [T] is
time and Jx [ML−2T−1], Jy [ML−2T−1] and Jz [ML−2T−1] are
solute fluxes in the x, y and z direction, respectively. Use vector
calculus notation to write the above equation in a compact form.

φ
∂c
∂t

=−∇ ·J

where J = Jxi+ Jyj+ Jzk.

Divergence of a matrix
Now consider a matrix, A, defined as

A =

 A11 A12 A13
A21 A22 A23
A31 A32 A33


Convention dictates that
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div(A) =



∂A11

∂x
+

∂A21

∂y
+

∂A31

∂z

∂A12

∂x
+

∂A22

∂y
+

∂A32

∂z

∂A13

∂x
+

∂A23

∂y
+

∂A33

∂z


Now consider three vectors, a1, a2 and a3, defined by

a1 =

 A11
A21
A31

 , a2 =

 A12
A22
A32

 , a3 =

 A13
A23
A33


such that it can be said that

A =
[

a1 a2 a3
]

It can be understood that

div(A) = div(a1)i+div(a2)j+div(a3)k (17.3)

17.5 Laplacian
Consider the divergence of the gradient of a scalar, T :

div(grad(T )) = ∇ ·∇T =
∂2T
∂x2 +

∂2T
∂y2 +

∂2T
∂z2 = ∇

2T (17.4)

where the ∇2 is often referred to as the Laplacian.
The name, Laplacian, comes from Laplace’s equation for

steady state heat conduction:
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∇
2T = 0 (17.5)

Challenge 17.4 Use vector calculus notation to write the fol-
lowing heat conduction equation in a compact form.

ρcp
∂T
∂t

− ∂

∂x

(
k

∂T
∂x

)
− ∂

∂y

(
k

∂T
∂y

)
− ∂

∂z

(
k

∂T
∂z

)
= 0

where ρ [ML3] is density, cp [L2T−2Θ−1] is constant-pressure
specific heat capacity, T [Θ] is temperature, t [T] is time and k
[MLT−3Θ−1] is thermal conductivity.

ρcp
∂T
∂t

−∇ · (k∇T ) = 0

Challenge 17.5 Write a simpler form of your results to the pre-
vious challenge that is suitable if thermal conductivity is uni-
form.

ρcp
∂T
∂t

− k∇
2T = 0

Laplacian of a vector
Now consider the divergence of the gradient of the aforemen-
tioned vector, u. Substituting Eq. (17.1) into Eq. (17.3) leads
to

div(grad(u)) = div(grad(u))i+div(grad(v))j+div(grad(w))k

and from Eq. (17.4)

div(grad(u)) = (∇2u)i+(∇2v)j+(∇2w)k



VECTOR CALCULUS 271

from which it follows that

div(grad(u)) = ∇ ·∇u = ∇
2u (17.6)

such that it can be seen that the divergence of the gradient of
a vector or a scalar gives rise to the Laplacian of a vector or a
scalar, respectively.

17.6 Problem sheet
Problem 17.1 (see Worked Solution 17.1)

Find the gradient of the following functions:

a) f = xy

b) f = x/y

c) f = ex siny

d) f =
1
2

ln(x2 + y2)

e) f = (x2 + y2 + z2)−1/2

f) f =
z

x2 + y2

Problem 17.2 (see Worked Solution 17.2)

Find the divergence of the following functions:
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a) f = xi+ yj+ zk

b) f = yzi+ zxj+ xyk

c) f = y2ezi+ x2z2k

d) f = xyz(xi+ yj+ zk)

e) f = cosxcoshyi+ sinxsinhyj

f) f = e−xyi+ e−yzj+ e−zxk

Problem 17.3 (see Worked Solution 17.3)

Find the Laplacian of the following functions:

a) f = x2 +4y2

b) f =
x− y
x+ y

c) f = exyz

d) f = xz/y

Problem 17.4 (see Worked Solution 17.4)

Show that
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a) ∇( f g) = f ∇g+g∇ f

b) ∇( f n) = n f n−1∇ f

c) ∇( f/g) =
1
g2 (g∇ f − f ∇g)

d) ∇2( f g) = g∇2 f +2∇ f ·∇g+ f ∇2g

e) div( f v) = f div(v)+v ·∇ f

f) div( f ∇g) = f ∇2g+∇g ·∇ f

g) div( f ∇g)−div(g∇ f ) = f ∇2g−g∇2 f

17.7 Worked solutions
Worked Solution 17.1 (see Problem 17.1)

Recall that ∇ f =
∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂z

k
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a) f = xy therefore ∇ f = yi+ xj =

 y
x
0


b) f = x/y therefore

∇ f = y−1i− xy−2j = y−2(yi− xj)

c) f = ex siny therefore

∇ f = ex sinyi+ ex cosyj = ex(sinyi+ cosyj)

d) f =
1
2

ln(x2 + y2) therefore

∇ f =
x

x2 + y2 i+
y

x2 + y2 j =
1

x2 + y2 (xi+ yj)

e) f = (x2 + y2 + z2)−1/2 therefore

∇ f = − x
(x2 + y2 + z2)3/2 i− y

(x2 + y2 + z2)3/2 j

− z
(x2 + y2 + z2)3/2 k =− (xi+ yj+ zk)

(x2 + y2 + z2)3/2

f) f =
z

x2 + y2 therefore

∇ f =− 2xz
(x2 + y2)2 i− 2yz

(x2 + y2)2 j+
1

x2 + y2 k

Worked Solution 17.2 (see Problem 17.2)
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Recall that div(f)≡ ∇ · f = ∂ f1

∂x
+

∂ f2

∂y
+

∂ f3

∂z
a) f = xi+ yj+ zk therefore div(f) = 1+1+1 = 3

b) f = yzi+ zxj+ xyk therefore div(f) = 0+0+0 = 0

c) f = y2ezi+ x2z2k therefore div(f) = 0+2x2z = 2x2z

d) f = xyz(xi+ yj+ zk) therefore

div(f) = 2xyz+2xyz+2xyz = 6xyz

e) f = cosxcoshyi+ sinxsinhyj therefore

div(f) =−sinxcoshy+ sinxcoshy = 0

f) f = e−xyi+ e−yzj+ e−zxk therefore

div(f) =−ye−xy − ze−yz − xe−zx

Worked Solution 17.3 (see Problem 17.3)

Recall that

∇
2 f =

∂2 f
∂x2 +

∂2 f
∂y2 +

∂2 f
∂z2
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a) f = x2 +4y2

∇2 f = 2+8 = 10

b) f =
x− y
x+ y

ln f = ln(x− y)− ln(x+ y)

∂ f
∂x

=
x− y
x+ y

(
1

x− y
− 1

x+ y

)
=

2y
(x+ y)2

∂2 f
∂x2 =

−4y
(x+ y)3

∂ f
∂y

=
x− y
x+ y

( −1
x− y

− 1
x+ y

)
=

−2x
(x+ y)2

∂2 f
∂y2 =

4x
(x+ y)3

∇2 f =
4(x− y)
(x+ y)3
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c) f = exyz

∂ f
∂x

= yzexyz,
∂2 f
∂x2 = (yz)2exyz

∂2 f
∂y2 = (xz)2exyz,

∂2 f
∂z2 = (xy)2exyz

∇2 f =
[
(yz)2 +(xz)2 +(xy)2]exyz

d) f = xz/y

ln f = lnx+ lnz− lny

∂ f
∂x

=
xz
y

1
x
=

z
y
,

∂2 f
∂x2 = 0

∂ f
∂y

=−xz
y

1
y
=

xz
y2 ,

∂2 f
∂y2 =

2xz
y3

∂ f
∂z

=
xz
y

1
z
=

x
y
,

∂2 f
∂z2 = 0

∇2 f =
2xz
y3

Worked Solution 17.4 (see Problem 17.4)
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a) ∇( f g) =
∂( f g)

∂x
i+

∂( f g)
∂y

j+
∂( f g)

∂z
k

=

(
f

∂g
∂x

+g
∂ f
∂x

)
i+
(

f
∂g
∂y

+g
∂ f
∂y

)
j

+

(
f

∂g
∂z

+g
∂ f
∂z

)
k

= f
(

∂g
∂x

i+
∂g
∂y

j+
∂g
∂z

k
)
+g
(

∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂z

k
)

= f ∇g+g∇ f

b) ∇( f n) =
∂( f n)

∂x
i+

∂( f n)

∂y
j+

∂( f n)

∂z
k

taking u = f n,
∂u
∂ f

= n f n−1

so it can be seen du =
∂u
∂ f

d f = n f n−1d f

∴ ∇( f n) = n f n−1
(

∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂z

k
)
= n f n−1

∇ f
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c) ∇( f/g) =
∂( f/g)

∂x
i+

∂( f/g)
∂y

j+
∂( f/g)

∂z
k

=
1
g2

(
g

∂ f
∂x

− f
∂g
∂x

)
i+

1
g2

(
g

∂ f
∂y

− f
∂g
∂y

)
j

+
1
g2

(
g

∂ f
∂z

− f
∂g
∂z

)
k

=
1
g

(
∂ f
∂x

i+
∂ f
∂y

j+
∂ f
∂z

k
)
− f

g2

(
∂g
∂x

i+
∂g
∂y

j+
∂g
∂z

k
)

=
1
g2 (g∇ f − f ∇g)

d) ∇2( f g) = ∇ ·∇( f g) = ∇ · ( f ∇g+g∇ f )

∇ · ( f ∇g) = ∇ ·
[

f
(

∂g
∂x

i+
∂g
∂y

j+
∂g
∂z

k
)]

=
∂ f
∂x

∂g
∂x

+ f
∂2g
∂x2 +

∂ f
∂y

∂g
∂y

+ f
∂2g
∂y2 +

∂ f
∂z

∂g
∂z

+ f
∂2g
∂z2

=
∂ f
∂x

∂g
∂x

+
∂ f
∂y

∂g
∂y

+
∂ f
∂z

∂g
∂z

+ f ∇
2g

∇ · (g∇ f ) =
∂ f
∂x

∂g
∂x

+
∂ f
∂y

∂g
∂y

+
∂ f
∂z

∂g
∂z

+g∇
2 f

∇2( f g) = g∇
2 f +2

(
∂ f
∂x

∂g
∂x

+
∂ f
∂y

∂g
∂y

+
∂ f
∂z

∂g
∂z

)
+ f ∇

2g

= g∇2 f +2∇ f ·∇g+ f ∇2g
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e) div( f v) =
∂( f v1)

∂x
+

∂( f v2)

∂y
+

∂( f v3)

∂z

= f
∂v1

∂x
+ v1

∂ f
∂x

+ f
∂v2

∂y
+ v2

∂ f
∂y

+ f
∂v3

∂z
+ v3

∂ f
∂z

= f
(

∂v1

∂x
+

∂v2

∂y
+

∂v3

∂z

)
+ v1

∂ f
∂x

+ v2
∂ f
∂y

+ v3
∂ f
∂z

= f div(v)+v ·∇ f

f) div( f ∇g) = f div(∇g)+∇g ·∇ f

Recall that div(∇g) = ∇2g

∴ div( f ∇g) = f ∇2g+∇g ·∇ f

g) Note that it can also be said that

div(g∇ f ) = g∇2 f +∇g ·∇ f

∴ div( f ∇g)−div(g∇ f ) = f ∇2g−g∇2 f



18

Vector calculus with stress
and strain

18.1 Learning outcomes
You should be able to:

• Derive the Cauchy momentum equation (CME) by consid-
ering the stress equilibrium of a control-volume.

• Derive the P-wave equation by taking the divergence of
the CME.

• Derive the S-wave equation by taking the curl of the CME.

• Show that D’Alembert’s formula is a solution of the one-
dimensional wave equation.

281
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18.2 The Cauchy momentum equation
Challenge 18.1 Consider a control-volume of dimensions, δx
[L], δy [L] and δz [L], in the x, y and z directions, respectively.
A corner of the control-volume (CV) is located at a reference
point located at (x,y,z) and the corner of the CV furthest away
from the reference point is located at (x+δx,y+δy,z+δz). Let
τxx, τyx and τzx be the stresses acting in the x direction on the
CV faces that share the corner at (x,y,z) and are normal to the
x, y and z directions, respectively. The stresses acting on the as-
sociated opposite faces are τxx + δτxx, τyx + δτyx and τzx + δτzx,
respectively.

In addition to these stresses, the CV is also subject to the
gravitational force associated with its own weight, δxδyδzρgx,
where ρ [ML−3] is the density of the rock and gx [LT−2] is the
acceleration due to gravity in the x direction. This additional
force is often referred to as a body force.

Determine an expression for the net force in the x-direction,
Fx [MLT−2].

Fx = −δyδzτxx −δxδzτyx −δxδyτzx +δyδz(τxx +δτxx)

+δxδz(τyx +δτyx)+δxδy(τzx +δτzx)+δxδyδzρgx

= δyδzδτxx +δxδzδτyx +δxδyδτzx +δxδyδzρgx

= δxδyδz
(

δτxx

δx
+

δτyx

δy
+

δτzx

δz
+ρgx

)
Challenge 18.2 Determine similar expressions for the net force
in the y and z directions, Fy and Fz, respectively.

Fy = δxδyδz
(

δτxy

δx
+

δτyy

δy
+

δτzy

δz
+ρgy

)
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Fz = δxδyδz
(

δτxz

δx
+

δτyz

δy
+

δτzz

δz
+ρgz

)
Challenge 18.3 Given Newton’s second law it can be said that

F = δxδyδzρa

where
F = Fxi+Fyj+Fzk

and a [LT−2] is the acceleration vector, defined by

a = axi+ayj+azk

Using the results from previous two challenges, derive an
expression for a in terms of τ and g where

g = gxi+gyj+gzk

The first step is to equate the expressions of net force in terms of
acceleration with those in terms of stress:

δxδyδzρax = δxδyδz
(

δτxx

δx
+

δτyx

δy
+

δτzx

δz
+ρgx

)

δxδyδzρay = δxδyδz
(

δτxy

δx
+

δτyy

δy
+

δτzy

δz
+ρgy

)
δxδyδzρaz = δxδyδz

(
δτxz

δx
+

δτyz

δy
+

δτzz

δz
+ρgz

)
These can be simplified to get:

ρax =
δτxx

δx
+

δτyx

δy
+

δτzx

δz
+ρgx

ρay =
δτxy

δx
+

δτyy

δy
+

δτzy

δz
+ρgy
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ρaz =
δτxz

δx
+

δτyz

δy
+

δτzz

δz
+ρgz

At this stage it would be useful to exploit vector calculus
notation so that we can introduce the stress tensor, τ . To do this
we need to make the control-volume infinitesimally small such
that δx → 0, δy → 0 and δz → 0. This is useful because

lim
δi→0

δτi j

δi
=

∂τi j

∂i

where i = x,y,z and j = x,y,z.
In this way, it can be understood that:

ρax =
∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z
+ρgx

ρay =
∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z
+ρgy

ρaz =
∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z
+ρgz

Recall that

∇ ·τ =



∂τxx

∂x
+

∂τyx

∂y
+

∂τzx

∂z

∂τxy

∂x
+

∂τyy

∂y
+

∂τzy

∂z

∂τxz

∂x
+

∂τyz

∂y
+

∂τzz

∂z


from which it follows that

ρa = ∇ ·τ +ρg (18.1)

Eq. (18.1) is a form of the Cauchy momentum equation.
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Challenge 18.4 From Hooke’s law we have

τ = 2Gε+λtrace(ε)I (18.2)

where G [ML−1T−2] is the shear modulus, λ [ML−1T−2] is the
Lamé parameter and ε [-] is a strain tensor found from

ε=
1
2
[
∇u+(∇u)T] (18.3)

and u = ui+ vi+wi [L] is a displacement vector.
Given that

a =
∂2u
∂t2 (18.4)

rewrite the result to Challenge 1c with u as the only dependent
variable and simplify as much as possible.

Substituting Eqs. (18.2) and (18.4) into Eq. (18.1) leads to

ρ
∂2u
∂t2 = ∇ · [2Gε+λtrace(ε)I]+ρg (18.5)

Substituting Eq. (18.3) into Eq. (18.5) then leads to

ρ
∂2u
∂t2 = ∇ ·

[
G
[
∇u+(∇u)T]+ λ

2
trace

[
∇u+(∇u)T]I

]
+ρg

Noting that trace(∇u) = trace[(∇u)T] and ∇ · (∇u) = ∇2u:

ρ
∂2u
∂t2 = G∇ · (∇u)+G∇ ·

[
(∇u)T]+λ∇ · [trace(∇u)I]+ρg

The above equation can be simplified further by considera-
tion of the following:
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∇ ·
[
(∇u)T]=



∂

∂x

(
∂u
∂x

)
+

∂

∂y

(
∂v
∂x

)
+

∂

∂z

(
∂w
∂x

)
∂

∂x

(
∂u
∂y

)
+

∂

∂y

(
∂v
∂y

)
+

∂

∂z

(
∂w
∂y

)
∂

∂x

(
∂u
∂z

)
+

∂

∂y

(
∂v
∂z

)
+

∂

∂z

(
∂w
∂z

)



∇ · [trace(∇u)I] =



∂

∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
∂

∂y

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
∂

∂z

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)


It therefore follows that

∇ ·
[
(∇u)T]= ∇ · [trace(∇u)I] = ∇(∇ ·u)

from which it can be said that

ρ
∂2u
∂t2 = G∇

2u+(G+λ)∇(∇ ·u)+ρg (18.6)

18.3 Wave equations
Challenge 18.5 Take the divergence of both sides of Eq. (18.6)
and substitute the P-wave potential, Φ [-], defined by

Φ = ∇ ·u
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Taking the divergence of both sides of Eq. (18.6) leads to

ρ∇ ·
(

∂2u
∂t2

)
= G∇ ·

(
∇

2u
)
+(G+λ)∇ · [∇(∇ ·u)]

Substituting the P-wave potential identity then leads to

ρ
∂2Φ

∂t2 = G∇ ·
(
∇

2u
)
+(G+λ)∇ · (∇Φ)

Recall that ∇ · (∇Φ) = ∇2Φ and therefore

ρ
∂2Φ

∂t2 = G∇ ·
(
∇

2u
)
+(G+λ)∇2

Φ

Now we need to consider the ∇ ·
(
∇2u

)
term:

∇
2u =



∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2
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∇ ·
(
∇2u

)
=

∂

∂x

(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)

+
∂

∂y

(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)

+
∂

∂z

(
∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2

)

=
∂2

∂x2

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)

+
∂2

∂y2

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)

+
∂2

∂z2

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
= ∇2(∇ ·u) = ∇2Φ

and therefore

ρ
∂2Φ

∂t2 = (2G+λ)∇2
Φ

which is a wave equation with a wave velocity of
√

ρ−1(2G+λ).



VECTOR CALCULUS WITH STRESS AND STRAIN 289

Challenge 18.6 The curl operator, ∇×u, is defined by

∇×u =



(
∂w
∂y

− ∂v
∂z

)
(

∂u
∂z

− ∂w
∂x

)
(

∂v
∂x

− ∂u
∂y

)


Take the curl of both sides of Eq. (18.6) and substitute the

S-wave potential, Ψ [-], defined by

Ψ= ∇×u

Note that:

∇
2u =



∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

∂2w
∂x2 +

∂2w
∂y2 +

∂2w
∂z2


and

∇(∇ ·u) =



∂

∂x

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
∂

∂y

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
∂

∂z

(
∂u
∂x

+
∂v
∂y

+
∂w
∂z

)
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from which it can be understood that

∇×∇
2u = ∇

2(∇×u)

and
∇×∇(∇ ·u) = 0

Therefore, taking the curl of both sides of Eq. (18.6) leads to

ρ
∂2Ψ

∂t2 = G∇
2Ψ

which is also a wave equation but with a wave velocity of
√

ρ−1G.

18.4 D’Alembert’s formula
Challenge 18.7 Consider the Cauchy momentum equation

ρ
∂2u
∂t2 = ∇ ·τ +ρg (18.7)

where ρ [ML−3] is density, u [L] is a displacement vector, τ
[ML−1T−2] is a stress tensor, and g [LT−2] is the gravitational
acceleration vector. Derive a wave equation for ∂2u/∂t2 when x,
y and z are the principal stress directions and strain is zero in the
y and z direction.

Helpful auxiliary equations include:

τ = 2Gε+λtrace(ε)I (18.8)

and
ε=

1
2
[∇u+(∇u)T] (18.9)

where G [ML−1T−2] is the shear modulus and λ [ML−1T−2] is
the Lamé parameter.
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Substituting Eq. (18.8) into Eq. (18.7) leads to

ρ
∂2u
∂t2 = 2Gdivε+λdiv(trace(ε)I)+ρg

Because x, y and z are the principal stress directions

ε=

 εxx 0 0
0 εyy 0
0 0 εzz


Because strain is zero in the y and z directions

ε=

 εxx 0 0
0 0 0
0 0 0


It follows that

divε=
∂εxx

∂x
i

and

trace(ε)I =

 εxx 0 0
0 εxx 0
0 0 εxx


and hence

div(trace(ε)I) =
∂εxx

∂x
i+

∂εxx

∂y
j+

∂εxx

∂z
k

Furthermore, because g = gk, it follows that

ρ
∂2u
∂t2 = (2G+λ)

∂εxx

∂x

and because εxx = ∂u/∂x:

ρ
∂2u
∂t2 = (2G+λ)

∂2u
∂x2 (18.10)
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Challenge 18.8 Show that the wave equation, derived from the
previous challenge, is satisfied by D’Alembert’s formula:

u(x, t) = f (x− ct)+g(x+ ct)

where c2 = (2G+λ)/ρ.

Substituting c2 = (2G+λ)/ρ into Eq. (18.10) leads to

∂2u
∂t2 − c2 ∂2u

∂x2 = 0 (18.11)

Now consider the proposed solution

u(x, t) = f (x− ct)+g(x+ ct) (18.12)

To verify that this is a solution to the wave equation we need
to partially differentiate the proposed solution and substitute it
back into the original partial differential equation (PDE).

To this end, let s1 = x− ct and s2 = x+ ct such that

u(x, t) = f (s1)+g(s2)

Now consider the first derivative with respect to x

∂u
∂x

=
∂ f
∂x

+
∂g
∂x

=
∂s1

∂x
∂ f
∂s1

+
∂s2

∂x
∂g
∂s2

=
∂ f
∂s1

+
∂g
∂s2

and now the second derivative with respect to x

∂2u
∂x2 =

∂2 f
∂x2 +

∂2g
∂x2 =

∂

∂x

(
∂ f
∂s1

)
+

∂

∂x

(
∂g
∂s2

)

=
∂s1

∂x
∂2 f
∂s2

1
+

∂s2

∂x
∂2g
∂s2

2
=

∂2 f
∂s2

1
+

∂2g
∂s2

2

(18.13)
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In the same way, it can be seen that

∂u
∂t

=
∂ f
∂t

+
∂g
∂t

=
∂s1

∂t
∂ f
∂s1

+
∂s2

∂t
∂g
∂s2

=−c
∂ f
∂s1

+ c
∂g
∂s2

and

∂2u
∂t2 =

∂2 f
∂t2 +

∂2g
∂t2 =

∂

∂t

(
−c

∂ f
∂s1

)
+

∂

∂t

(
c

∂g
∂s2

)

=−∂s1

∂t
c

∂2 f
∂s2

1
+

∂s2

∂t
c

∂2g
∂s2

2
= c2

(
∂2 f
∂s2

1
+

∂2g
∂s2

2

) (18.14)

Substituting Eqs. (18.13) and (18.14) into Eq. (18.11) leads
to

c2
(

∂2 f
∂s2

1
+

∂2g
∂s2

2

)
− c2

(
∂2 f
∂s2

1
+

∂2g
∂s2

2

)
= 0

which confirms that Eq. (18.12) is indeed a solution to Eq.
(18.10), and therefore the full wave equation when x,y,z rep-
resent the principal stress axes and strain only occurs in the x
direction.
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